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GENERAL PREFACE

This monograph was written for the Conference on the New Ink. ,4ctiona

Materials in Physics, held at the University of Washington in the sum-

mer of 1965. The general purpose of the conference was to create effec-

tive ways of presenting physics to college students who are not pre-

paring to become professional physicists Such an audience might include

prospective secondary school physics teachers, prospective practitioners

of other sciences, and those who wish to learn physics as one component

of a liberal education.

At the Conference some 40 physicists and 12 filmmakers and design-

ers worked for periods ranging from four to nine weeks. The central

task, certainly the one in which most physicists participated, was the

writing of monographs.

Although there was no consensus on a single approach, many writers

felt that their presentations ought to put more than the customary

emphasis on physical insight and synthesis. Moreover, the treatment was

to be "multi-level" --- that is, each monograph would consist of sev-

eral sections arranged in increasing order of sophistication. Such

papers, it was hoped, could be readily introduced into existing courses

or provide the basis for new kinds of courses.

Monographs were written in four content areas: Forces and Fields,

Quantum Mechanics, Thermal and Statistical Physics, and the Structure

and Properties of Matter. Topic selections and general outlines were

only loosely coordinated within each area in order to leave authors

free to invent new approaches. In point of fact, however, a number of

monographs do relate to others in complementary ways, a result of their

authors' close, informal interaction.

Because of stringent time limitations, few of the monographs have

been completed, and none has been extensively rewritten. Indeed, most

writers feel that they are barely more than clean first drafts. Yet,

because of the highly experimental nature of the undertaking, it is

essential that these manuscripts be made available for careful review



by other physicists and for trial use with students. Much effort,

therefore, has gone into publishing them in a readable format intended

to facilitate serious consideration.

So many people have contributed to the project that complete

acknowledgement is not possible. The National Science Foundation sup-

ported the Conference. The staff of the Commission.on College Physics,

led by E. Leonard Jossem, and that of the University of Washington

physics department, led by Ronald Geballe and Ernest M. Henley, car-

ried the heavy burden of organization. Walter C. Michels, Lyman G.

Parratt, and George M. Volkoff read and criticized manuscripts at a

critical stage in the writing. Judith Bregman, Edward Gerjuoy, Ernest

M. Henley, and LawrJnce Wilets read manuscripts editorially. Martha

Ellis and Margery Lang did the technical editing, Ann Widditsch

supervised the initial typing and assembled the final drafts. James

Grunbaum designed the format and, assisted in Seattle by Roselyn Pape,

directed the art preparation. Richard A. Mould has helped in all phases

of readying manuscripts for the printer. Finally, and crucially, Jay F.

Wilson, of the D. Van Nostrand Company, served as Managing Editor. For

the hard work and steadfast support of all these persons and many

others, I am deeply grateful.

Edward D. Lambe
Chairman, Panel on the
New Instructional Materials
Commission on College Physics



THE NATURE OF ATOMS

FOREWORD

A great diversity of observations compels the inference that matter is

made of atoms, despite the fact that nobody has ever "seen" one. Over

the past two centuries the atomic hypothesis has been especially

fruitful in providing explanations for the behavior of matter. This

monograph summarizes the history of that hypothesis up to the begin-

ning of this century, when atoms themselves were found to be divisible

into electrons and nuclet

From that point, the monograph confines its attention to the be-

havior of the electrons in atoms, ignoring the fact that the nuclei

have been found in turn to be divisible. There is much justification

for separating the study of nuclear structure from that of electronic

behavior. The Phenomena by which the two sorts of structure can be

investigated experimentally are quite different, and are character-

ized by absorptions and evolutions of energy that fall in widely dif-

ferent energy ranges. Almost all the phenomena of ordinary life are

controlled by the electronic behavior of the participating atoms, and

differences of nuclear structure have little effect on that behavior.

The wave-mechanical discussion in the last seven chapters of this

monograph presupposes some acquaintance with wave mechanics. The rele-

vant ideas are summarized in another monograph, Wave-Mechanical Prop-

erties of Stationary States. In turn this monograph provides informa-

tion that will give help in reading the monograph, Bonds Between Atoms.
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ATOMIC HYPOTHESIS

For most people the difficulty of liv-

ing is not abated by adding to it a

concern about how the world is made.

But there have always been some for

whom that concern has been unavoid-

able - for a few, even joyful - and

they have constantly remade the world

of the others. Today a conspicuous re-

sult of their efforts is the notion

that all matter is made of atoms; it

is a notion held by everybody who has

heard of it, whether or not he can

cite any evidence or authority for the

idea.
The story of how this notion

arose is one of the most interesting

and difficult studies in intellectual
history. Shreds of the idea appear in

ancient Hindu philosophy, particularly

in the writings of Kanada. More defi-

nitely it emerges as one of the many

competing doctrines of Greek philos-

ophy in the fifth century B.C.; and

its principal Greek proponents,
Leucippus and Democritus, are often

credited with originating it. Four

centuries later Lucretius expounded it

in some detail in his poem De Rerum

Natura.
But what was the substance of

those early thinkers' vision of the

world? Its interpretation is obscured

now by problems of the authenticity of
documents and the meaning of words.

The very existence of Leucippus has

been questioned, and his ideas and

those of Democritus are known primar-

ily through the writings of their phil-

osophical opponents. Democritus, com-

bating the proposition that "anything

which can be done once can be done

again," seems to have taught that the

repeated division of matter, at any

rate, cannot be carried on indefi-

nitely. He visualized the ultimately

indivisible particles as infinite in

kind, but made of a single dense ma-

terial. The differences in kind re-

sided mostly in their shapes and their

1

sequences of juxtaposition with othe..'s.

Thus the particles of water, smooth

and round, are able to roll over one
another, whereas the jagged particles

of iron hook on to one another to form

a solid body.
Can we know today how strongly

Democritus held to such concrete pic-

tures - how much he was led to over-

specify them by the techniques of

Grecian controversy - how often his

opponents are only reporting a straw

man knocked down? And can we estimate

well the relative amounts of observa-

tion on the one hand, and of free spec-

ulation on the other, that formed the

views of the early Greek atomists?

The ancient scene provided most of

the same gross features as the modern

to suggest an atomic constitution of

matter. Then as now, solid salt would

disappear in water and reappear when

the water evaporated. Surely someone
would suggest that perhaps the salt is

not destroyed and then recreated but

instead is dispersed into invisible

fragments and then reassembled.
Some have regretted that the doc-

trines of the atomists lost the con-

test in the rough-and-tumble of Greek
philosophical controversy. In any case,

soon after the time r.,1 the atomists,

philosophical attention began to look

more inward into man a' less outward

into the external worlu. The early

robust enthusiasm for explaining na-

ture gave way tf.) kntrospective exami-

nation of how man can know, cultivat-

ing the view, always latent in Greek

thinking, that man can discover the
universe by thought alone. As a result

of this evolution, the legacy of

Greek philosophy became dominated by

two towering figures, Plato and Aris-

totle.
The latter in particular, by giv-

ing some of his widely diversified at-

tention to the question of how matter

is made, bequeathed the picture sug-
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Fig. 1.1 Aristotle taught that the differ-
ent forms of matter resulted from the im-
press, on a neutral matter-stuff, of four
formative principles: hotness and dryness,
and their opposites, coldness and wetness.
In particular, pairs of these principles
produced the "four elements," fire; earth,
water, and air.

gested in Fig. 1.1, that directed fur-
ther thinking in both the Christian
and the Arab worlds for many centuries.
The Arabs, especially, cultivated what
they believed must be the practical
consequences of Aristotle's doctrine.
If all the kinds of matter result
from the impress of formative princi-
ples on a single substance, one kind
should be transformable into another.
At the base of Arabian alchemy lay
7,he search for ways of imposing in
practice the formative principles
suited to particular transformations

At least two separate questions
are now distinguishable in the early
controversies: (1) whether matter is
made of separate particles or a con-
tinuous smear, and (2) whether it is
made of a single underlying stuff or
many stuffs. Descriptions were con-
structed by combining answers to
these questions in many ways; and the
task of deciphering sympathetically
the meanings of those descriptions is
often impeded by misconceptions coming
from the slowly changing connotations
of ancient words over centuries of use.

"Element," for example, is a
word used differently in describing

the modern view of matter and Aris-
totle's view, for clearly in Aristo-
tle's world there was only one element
in the present sense of the word - the
neutral stuff of which everything, in-
cluding "the four elements," is com-
posed. And during the long life of the
Aristotelian doctrine, the primacy of
those four especially primitive "ele-
ments" declined. With the development
of metallurgy by the Arabs and the
growth of pharmacology at the hands of
the iatrochemists, new emphases led
to new "elements." By the sixteench
century the tria prima of Paracelsus,
If mercury," "sulfur," and "salt," held
sway.

The overturn of this way of look-
ing at the world was accomplished in
the following century when Robert
Boyle proposed in The Sceptical Chym-
ist that, while there are indeed prim-
itive substances, there are more than
three. "I mean by elements . . . cer-
tain Primitive and Simple or perfectly
unmingled bodies; which not being made
of other bodies, or of one another,
are the Ingredients of which all those
call'd perfectly mixed Bodies are im-
mediately compounded, and into which
they are ultimately resolved." All
other substances are formed from
these, he proposed, not by formative
influences but by the conjunction of
their partic'es in various combina-
tions, in which the particles of the
primitive substances remain and from
which they can be recaptured.

There followed a lively search
for the primitive substances and the
rules by which they combine. Clearly
implicit in that search was the re-
birth of an atomic theory in a plural-
istic form - a theory of indestructi-
ble particles of many primitive
substances - and the succe,oding 150
years saw rapid progress in developing
the new ideas. The study of gases in
particular supported the notion that
matter comes in small particles.
Isaac Newton suggested in 1686 that a
gas will expand when it can because it
is made of tiny particles that repel
one another. In 1738, Daniel Bernoilli
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laid the foundation for the present

kinetic theory of gases by showing
that the connection between the volume

and the pressure of a gaseous sample,

discovered by Boyle and by Edme Mari-
otte independently, can be explained

by a model (Fig. 1.2) in which small

particles of the gaseous substance
are continually rushing about, bombard-

ing the walls of their container.
By the beginning of the nine-

teenth century, investigation of the

properties of matter and the chemical

transformations it sustains had ac-
cumulated a body of facts ripe for

synthetic interpretation. It was John

Dalton, son of a poor weaver, whose

insight first fitted the pieces to-
gether. Tn A New System of Chemical
likilasopthy (1808-1810), he wrote, "The

existence of ultimate particles of
matter can scarcely be doubted) though

they are probably much too small even
to be exhibited by microscopic im-

provement. I have chosen the word
'atom' to signify those ultimate par-
ticles, in preference to particle,
molecule, or any other diminutive term,

becauEs I conceive it is much more
expressive; it includes in itself the

notion of indivisible', which the

other terms do not . . . . Chemical

analysis and synthesis go no further

than to the separation of particles
one from another, and to their reunion.

No new creation or deEA,ructi,,J,1 of mat-

ter is within the reach cy

agency."
Apparently Dalton was first at-

tracted toward these conclusions by

contemplating the implications of

meteorological observations that he

had made over many years, and by fur-

ther study of the absorption of vari-

ous gases by water. Ascribing definite
relative weights to the different spe-

cies of atoms, he tested his idea that

different substances result from com-
bining such atoms in simple integer

ratios by applying it to the reported

IDalton here invokes the Greek etymology of the'
word: a (not) plus temneia (to cut), whence
atomos (the indivisible).

We
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Fig. 1.2 Using this mental model of a gas,
Daniel Bernouilli showed in 1738 that the

relation between the pressure of a gas and

its volume could be explained by suppcsing

that its constituent particles are in con-

stant motion, beating against the walls of

the vessel that confines them.

chemical analyses of various sub-
stances, and found agreement. Dalton's

own quantitative work was rather
rough and ready; some of it, indeed,
was far from right. The most cele-
brated chemist of his day, Sir Hum-
phry Davy, though an admirer of Dal-
ton, said that he was a "very coarse
experimenter" who "almost always found
the results he required, trusting to

his head rather than his hands." Dal-

ton's insight was surely brilliant;
his picture of substances (Fig. 1.3)

as made of tiny molecules, each com-

posed of a few elementary atoms that

remain essentially the same in any of

their occurrences, still directs the

interpretation of chemical results

today.
In spite of its many successes,

a reaction against a too-great con-

creteness of the atomic hypothesis
arose among some philosophers and
physicists near the end of Dalton's
own century. Positivists argued

against accepting an object that can-
not be seen, erecting a barrier to all

natural knowledge that purports to
transcend the limits of resolution and

wavelength sensitivity characteristic
of the human eye. Recalling the aesthe-

tic principle of the sciences that
limits hypotheses to no more than are
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Fig. 1.3 At the beginning of the nine- of combinations of atoms of various ele-

teenth century, John Dalton proposed that mentary substances in simple numerical ra-

the particles of any form of matter consist tios.

necessary to explain the facts, Hans
Bucherer likened the atomic hypothesis
to a scaffold which can be taken down
when the building is finished. Hardly
more hospitably, Gustav Hertz called

it a picture or model which we can
make of phenomena since they behave in
many respects as if matter consists of

atoms.
To be sure, the work of our own

century has shown that an atom is not
a-tomic," indivisible. At the turn of

the century, J. J. Thomson's investi-
gation of cathode rays was demonstrat-
ing that atoms contain electrons,
which they will eject under special
circumstances. Thus atoms became divi-
sible, and a structure could be visual-
ized in which each is composed of
negatively charged electrons, one or
many, and a body of some sort bearing

a compensating positive charge.
Thomson's work left unclear

whether its positive charge is smeared
throughout an atom, forming a pudding
in which the electrons are embedded,
or is concentrated at some localized

places in the atom. Ten years later
Ernest Rutherford's experiments showed
that all the positive charge in an
atom is indeed very strictly localized
in one nucleus, which also carries
most of the mass of the atom. Thus an
atom could be visualized as a solar
system writ small - a collection of
tiny electrons whirling about a tiny
nucleus much as the planets circulate

about the sun. In such a picture an
atom consists mostly of empty space:
it is far from being the tiny infrangi-
ble ball, everywhere dense, that was
probably visualized by Dalton.

As a principal tool in his inves-
tigations, Rutherford used the so-
called alpha particles ejected by the
radioactivity of radium. Studies of
such radioactivity initiated the in-
tensive work of our century, showing
that the atomic nuclei in turn are di-
visible and have a structure.

What remains of Democritus' con-
tention that the divisibility of mat-
ter must come to an end - of Dalton's
assertion that "the existence of ulti-
mate particles of matter can scarcely
be doubted"? The atoms on the surface
of the filament in a vacuum tube emit
electrons: the atoms are not strictly
"atomic." Slowly in a luminous watch
dial, catastrophically fast in an
atomic bomb, substances change their
species: the elements are not strictly
"elementary." But atoms can still be
dissolved and recaptured; they bounce
off the inner walls of automobile
tires; they can be formed into "atomic
beams" and deflected. And we can still
repeat Dalton's statement that "chemi-
cal analysis and synthesis go no fur-
ther than to the separation of parti-
cles one from another, and to their
reunion."

The reconciliation of atomic
divisibility with atomic integrity,
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and of emptiness with solidity, re-

quired revolutionary modifications of

the mechanical principles that have

served so well for objects larger

than a single atom. Quantum theory,

developed by Max Planck in a different

context while Thomson was studying

cathode rays, was applied in 1913 to

Rutherford's planetary model of the

atom by Niels Bohr, to provide the be-

ginnings of the needed reconciliation.

The wave-mechanical formulation of

that theory, invented by Erwin Schroed-

inger in 1925, has been especially suc-

cessful in providing an orderly way of

describing atomic behavior, and this

monograph is largely occupied with

that form of description.
These ways of thinking leave

little of the concreteness that or-

dinary experience makes comfortable

to us. The "tiny particles" disappear

into objects whose behavior is de-

scribable only by wave equations, re-

calling the vision of certain early

mystics that matter is "frozen light."

To visualize events in the subatomic

world, we must reconstitute our ways

of visualization, perhaps even accept-

ing the limitation that we can do no

better than provide means for calculat-

ing consistently whatever adds up to

affect our senses and our instruments.

But in any such effort the atomic

hypothesis still stands. It becomes

the assertion that matter is submicro-

scopicallv inhomogeneous. The final

graininess may not be like that of

sandpaper; it may be like that of a

water surface that is not smooth but

is covered with tiny ripples. To as-

sert this inhomogeneity - no matter in

what image - is to make an enormous

judgment on nature's ways.



2 THE CHEMICAL

RougLly speaking, a million single de-
finite substances are known today. In
accordance with the program first
visualized by Robert Boyle in 1061,
they can all be described as combina-
tions of 90 elementary materials. And
the elaboration of the ideas proposed
by John Dalton in 1808 has produced
for most of these substances very con-
crete pictures in which they appear
made of tiny molecules, each consist-
ing of relatively few atoms of their
elementary ingredients.

The identification of what sub-
stances are elementary and what are
not captured much attention over two
hundred years, and the table of natur-
ally occurring elements was only com-
pleted during the first quarter of
this century (Fig. 2.1). In our own
time the table of elements is being
lengthened by the construction of
artificial elements." De:liberate

bombardment of natural elements by
particles of very high energy has

1730 1830 1930

Fig. 2.1 The number of identified chemical
elements grew over two centuries from 12 in
1730 to 90 in 1930.

6

ELEMENTS

welded those particles to the bom-
barded nuclei, producing tiny quanti-
ties of elements not otherwise en-
countered and usually short-lived. But
the substances that make the stable
world remain accountable in terms of
90 elements.

And of those elements, no more
than twenty suffice to account for
most of the world. Living matter in
all its forms consists almost entirely
of carbon, hydrogen, oxygen, and ni-
trogen. Smaller quantities of other
elements are needed for life - espec-
ially of calcium, sulfur, and phos-
phorus in bones and proteins, and of
magnesium, iron, sodium, potassium,
chlorine, and iodine here and there.
The inorganic crust of the earth con-
sists mostly of fluorides, oxides,
silicates (silicon and oxygen), and
carbonates (carbon and oxygen) of
aluminum, magnesium, calcium, iron,
sodium, and potassium. The earth's
core is believed to be made largely of
molten iron and nickel. Thus the rich
diversity of the world flows not from
the diversity of its elementary parts
but from the versatility of about
twenty atomic species in their ways
of joining together.

The naturally occurring elements
are listed in Table 2.1. Most are
metals. There are fourteen familiar
nonmetals: hydrogen, oxygen, nitrogen,
carbon, fluorine, chlorine, bromine,
iodine, sulfur, selenium, phosphorus,
arsenic, boron, and silicon. Six more,
less familiar, are the "rare gases" -
helium, neon, argon, krypton, xenon,
and radon - which are unique in their
reluctance to enter into chemical com-
bination. Three elements - tellurium,
antimony, and germanium - fall on the
borderline between metals and non-
metals, sharing some properties of

both classes.
Long before this listing was

completed, chemists noticed more re-
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fined similarities and differences
between the elements, which led them

to subclassify the metals and the non-

metals. Beginning in 1817, Johann
Igibereiner called attention to certain

triads of elements with similar prop-
erties, and pointed out that the mem-
bers of each triad can be listed in

an order such that the middle member

has properties representing a mean
between the two extremes. One such

triad is chlorine, bromine, and iodine,

belonging to a group that we now call

"halogens." Another is lithium, sodium,

and potassium, today called "alkali

metals." A third, the "alkaline earth

metals," is calcium, strontium, and

barium.
From 1830 to 1860, many chemists

extended this kind of correlation, and

showed that such a relationship is not

necessarily confined within a triad.

They added fluorine to the halogens,

magnesium to the alkaline earths; and

Discussion 2.1

when rubidium and cesium were discov-

ered in 1860-61, those elements joined

the family of the alkalis. And two

other families received recognition -

oxygen, sulfur, selenium, and tellur-

ium forming one, and nitrogen, phos-

phorus, arsenic, antimony, and bismuth,

the other.
It might seem more reasonable on

physical grounds to place the gases,

oxygen and nitrogen, in the same fam-

ily, and so also the two metalloids,
tellurium and bismuth. But the compel-

ling grounds for relating oxygen to

tellurium, and nitrogen to bismuth,

were chemical, and their explanation
in physical terms in our own century

exemplifies the close fraternity of

chemistry and physics in elucidating

the structure of matter. These fami-

lies were founded in the chemical

ideas of "combining weight" and "val-

ency," described in Discussion 2.1,

which arose from Dalton's work at the

COMBINING WEIGHT, ATOMIC WEIGHT, AND VALENCY

The coMbining weight of an ele-

ment is that weight which combines

with, or displaces from combination,
a unit weight of hydrogen. For exam-

ple, eight grams of oxygen combine

with one gram of hydrogen to form

water. Thus the combining weight of

oxygen is 8.
According to the atomic hypothe-

sis, the elements combine to form

Molecules of which each contains whole

numbers of its constituent elementary

atoms. The simplest immediate assump-
tion is that a molecule of water might

be written HO, with one atom of hydro-

gen and one of oxygen. Then, if the

itomic weight of hydrogen is taken as

!nifty, the atomic weight of oxygen
Would be 8, in agreement with its

combining weight.
But the volumes of gaseous hydro-

gen and oxygen that combine to form

water are as two to one; and when

water is decomposed by electrolysis,

twice as large a volume of hydrogen

as of oxygen is evolved. Early in the

nineteenth century, chemists concluded

that equal volumes of two gases (at

the same temperature and pressure) con-

tain equal numbers of molecules, re-
gardless of the'species of the gases.

Then if the molecules of gaseous hy-

drogen and oxygen are composed of the

same number of atoms, water must be

written H2O, not HO, and the atomic

weight of oxygen must be 16, not 8.

The number of combining weights

in one atomic weight of an element is

called the valency of the element, and

accordingly oxygen receives valency 2.

By extending such reasoning in various

ways to the experimentally measured
combining weights of Other elements,

an interngly congistent set of atomic

weights and valencies has been as-

signed to them.
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beginning of the nineteenth century
and rapidly grew in definiteness and
application. The elements that form
the family containing oxygen and tel-
lurium all have in common the valency
21 and the family containing nitrogen
and bismuth shows the valency 3.

The observation of such families
spurred many efforts to find a sys-
tematic way of organizing the entire
list of elements that would reflect
their chemical similarities and dif-
ferences. These attemptl:, began to meet
with success in the 1860's; by that
time about 65 elements had been iden-
tified, their combining weights were
known, and valencies had been assigned
to most of them. Several chemists no-
ticed a periodic type of regularity
appearing when the elements are listed
in order of increasing atomic weight.
John Newlands, in particular, observed
that often the properties of an ele-
ment are similar to those of the ele-
ment seven places further along in the
list, and enunciated a "law of octaves"
in analogy with the characteristics
of the diatonic musical scale2.

Finally, in 1869, Lothar Meyer in
Germany and Dmitri Mendeleyev in Rus-
sia independently put forward essen-
tially similar versions of what is now
called the periodic table of the ele-
ments. Mendeleyev's form of the table
emphasized especially clearly the peri-
odic variation of the valencies of the
elements. By listing the elements in
horizontal rows in order of increasing
atomic weight, and beginning a new
row when the valency repeats, the ver-
tical columns of the table constitute
the families of related elements that
had been noticed earlier, which are
now called groups.

Only a wide experience with de-
scriptive chemistry can give an ap-
preciation of the large body of iso-

2Reading his paper to a meeting of the Chemical
Society of London in 1865, Newlands met with
some scorn; in particular the chemist Carey
Foster asked him whether he had thought to class-
ify the elements in order of the initial letters
of their names.

lated observations set in order by
the periodic table. It is now the
central intellectual tool of chemis-
try. Some of its great power appears
in the predictions that Mendeleyev
himself made with its aid. He left
gaps in the table when the ascending
sequence of atomic weights revealed
gaps in the sequence of valencies, and
predicted confidently that new ele-
ments would be discovered that would
fill those gaps. And he predicted in
some detail what properties those ele-
ments would turn out to have. Table
2.2 shows, for example, his predic-
tions in 1871 regarding germanium
(which he called eka-silicon, Es) and
their verification by Clemens Winkler
fifteen years later. With the same suc-
cess he predicted the existence and
properties of scandium and gallium.

Mendeleyev's earliest grouping
by valency provided seven groups,
strongly suggesting Newlands' octaves.
In 1871, he revised the form of the
table to accommodate certain heavier
elements in an eighth group. Then, be-
ginning in 1894, the chemically inert
rare gases were successively discov-
ered, and Mendeleyev suggested that
they be accommodated in a ninth group,
with valency zero. But the atomic
weights of the lighter of these gases,
especially of neon, filled gaps in
Mendeleyev's eighth group, and they
were placed there even though they ex-
hibited no family resemblance to such
elements as iron and platinum already
placed in that group. And a few other
anomalies persisted. The rare gas
argon, whose atomic weight is greater
than that of potassium, must precede
potassium on grounds of valency; and
the sequence of tellurium and iodine
is anomalous in a similar fashion.2

Two large successions of physical
discovery in this century have ration-
alized the periodic table in a way
that removes these anomalies. The

3Such anomalies led Sir William Ramsay, codis-
coverer with Lord Rayleigh of most of the rare
gases, to describe the study of the periodic
table as "a painful pleasure."
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first began with the identification of

the electron by J. J. Thomson in 1897,

leading to the picture of an atom as
containing electrons whose number,

running through the successive inte-

gers, exactly parallels the sequence

in the periodic table. The second

began with Ernest Rutherford's discov-
ery in 1913 that the mass of an atom

is principally lodged in a nucleus at

the atom's core, leading to a picture
of nuclei as bearing a positive charge

equal and opposite to that of the
atom's electrons. Henry Moseley soon
made it clear that the true sequence
of elements in the periodic table is
that of their atomic number - the num-
ber of electrons that they contain -
rather than their atomic weight.

It may seem odd that the atomic
weight, due mostly to the nucleus,
correlates so closely with the atomic
number: the weight increases as rough-
ly two times the number. As early as
1815, William Prout had noticed that
the atomic weights of many of the
lighter elements are simple multiples
of the atomic weight of hydrogen, and

suggested that hydrogen might be the
sole primary source of all matter,
from which the other elements are pro-
duced by some process of condensation.
As more atomic weights were determined

accurately, "Prout's hypothesis" had

to be discarded.
But that hypothesis is an inter-

esting precursor of a picture of
nuclei that is especially useful to
chemists today - one that has removed

the remaining anomalies of the period-

ic table. In this picture a nucleus

is thought to be made of protons -
the particle with the mass and charge

of the nucleus of hydroisen - and neu-

trons - the particle, id9ntified by

James Chadwick in 1932, uith the same

mass as the proton but without charge.

Then the atomic number of v nucleus is

equal to its number of protons, and

the atomic mass is equal to that of

the sum of its protons and neutrons.

The departure of the atomic weight of

a naturally occurring element from a

simple integer can be ascribed to the

fact that the element contains a mix-

ture of atoms having the same atoxic

number and different atomic masses.
Indeed by the techniques of mass spec-

troscopy, such isotopes can now be

separated and identified. The natural

distribution of the isotopes of an

element is remarkably uniform through-

out the earth's crust, giving signifi-

cance to a precise chemical determina-

tion of atomic weight.
A study of the various forms of

the periodic table that are shown in

Tables 2.3, 2.4, and 2.5 will repay

those who are not already well ac-
quainted with this way of relating

the properties of the elements. The

way in which the atomic pictures due

to Rutherford and Niels Bohr rational-

ized the periodic table is described

in the following chapter, and Chapter

8 provides a wave-mechanical discus-

sion of the table.



3 MODELS

During the latter half of the nine-
teenth century, while chemists were
identifying the elementary species of
atoms and developing the periodic
table to summarize their growing knowl-
edge of how those species behave, more
strictly physical investigations of
the electrical properties of matter
were gradually making clear that atoms
are not indivisible, but are aggre-
gates of separate particles. Studies
of the rays emitted from the cathode
(the negatively charged electrode) in
an evacuated tube carrying an electri-

cal discharge showed that those
"cathode rays" consist of tiny parti-
cles bearing a negative charge. Since
cathodes made of any sort of metal
emit the particles, J. J. Thomson con-
cluded that they are ingredients of
all species of atoms. And he showed
that these particles, which received
the name electrons, are all alike,
each with a mass only about 1/2000 as
large as a hydrogen atom.

In 1904, Thomson suggested that
the arrangement of the electrons with-
in atoms might provide a structural
origin for the relations between the
elements, correlated in the periodic
table. He guessed that the electrons
might be found in groups or layers,
and that the number of electrons in
the outermost layer might largely de-
termine the chemical properties of the
species (Fig. 3.1). The rare gas atoms
might contain especially stable ar-
rangements of electrons. An atom with
one electron less than a rare gas
atom - for example, chlorine - might
tend to acquire an extra electron and
so to form a negative ion. An atom
with one more electron - for example,
sodium - might readily lose it, to
form a positive ion. Hence atoms that
readily lose electrons would combine
chemically with atoms that readily
acquire electrons.

Ernest Rutherford's discovery in

OF AN ATOM
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1912, that the positive charge in an
atom is concentrated in a single
nucleus at its core, suggested the
exciting possibility that all these
properties of atoms might be explained
by the mechanical behavior of their
constituent particles. It was natural
to assume that each electron in an
atom traverses an orbit about the
nucleus, whose size and shape is de-
termined by balancing the inward at-
tractive force between the negative
charge on the electron and the posi-
tive charge on the nucleus against
the outward centrifugal force of the
circulating electron. The attractive
force, obeying Coulomb's law, would
vary inversely as the square of the
distance between the charges - in
other words, by the same rule that
governs the gravitational attraction
between a planet and the sun.

But clearly such a picture would
require some modification in order to
explain two conspicuous properties of
atoms. The first is the fact that an
atom of a particular species is indis-
tinguishable from any other atom of
the same species under the same condi-
tions anywhere in the world at any
time. Since atoms are constantly col-
liding with one another, it is remark-
able that they remain unchanged and
characteristic of their species. Solar
systems that started out alike would
not remain so after such vicissitudes.
For example, a collection cf solar
systems could not be condensed from a
gas to a liquid and revaporized with-

out change.
In the second place, if an elec-

tron is a charged particle traversing
an orbit, then it should radiate elec-

tromagnetic waves. Since those waves
would carry energy away from the atom,
the electron should lose energy, and
its orbit should change, allowing it
to come constantly closer to the nu-
cleus. As its orbit changes, the fre-
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Fig. 3.1 J. J. Thomson's idea that the
electrons in an atom occupy "shells" is
still useful for discussing the chemical
behavior of the atomic species, especially
those in the first three periods of the
periodic table. In each successively heav-
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ier species of atom, one electron is added
and one additional positive charge is added
also, along with the increased mass. In
atoms of the rare gases all shells that are
occupied at all are filled to their maxi-
mum capacity.
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vency with which it traverses the
orbit would also change, and thus the
frequency of the wave that it radiates
should change. Finally the electron
should lose enough energy to fall into
the nucleus; the atom should collapse
to a size not much bigger than its
nucleus.

In fact, of course, atoms are
not continually radiating and collaps-
ing. They radiate only when they are
somehow excited; and then the frequen-
cies of their radiations are very
sharply defined, and characteristic of
each atomic species - so characteris-
tic that breaking up the radiation
into its component colors in a spec-
troscope is used analytically for
identifying the species.

The year after Rutherford's dis-
covery, Niels Bohr made the first at-
tempt to provide a mechanical explan-
ation for these peculiarities of the
atomic planetary system. He recognized
that the quantum theory, developed by
Max Planck in 1900, could be applied
to the behavior of the electrons in
atoms. It offered a reason why an
electron might adopt a state of motion
from which it could be dislodged only
with difficulty - a state chosen from
a limited set of such states. And Bohr
recognized also that, when it is
forced to change from one of its per-
mitted states of motion to another,
the electron might emit a burst of
radiation whose frequency would be
sharply defined by its initial and
final states.

Planck had invented the quantum
theory to explain the results of ex-
periments on the light radiated from
a hole in an empty black cavity,
heated until it glowed. Presumably
that light is given off by the atoms
at the walls of the cavity: their
heat vibrations rapidly oscillate the
electric charges associated with them,
and cause them to radiate the electro-
magnetic waves called light, much as
a radio antenna radiates similar
waves with longer wavelengths.

Examining the different amounts
of energy radiated at different wave-

lengths by such a "black body," Planck
was forced to conclude that the vibrat-

ing atoms do not emit or absorb light
continuously but only in little pack-
ages. Each package has a definite size,

in terms of its content of energy,
which is directly proportional to the
frequency of the light. In other words,
the energy in each package is given by
E = hv, where v is the frequency, and
h is the constant of proportionality
now called Planck's constant.

In 1905, Albert Einstein made
several applications of these new
ideas to other puzzling phenomena -
for example, the photoelectric effect,
in which certain metals emit electrons
when they are irradiated with light
of suitable frequencies. In discus-
sing such effects, he suggested that
each package of radiant energy, hv,
did not spread out from its source
in all directions but was sent out uni-

directionally, like a particle. It has
become customary to speak of such a
"particle" as a photon.

Einstein's sucaess in explaining
these matters gave the quantum theory
further stature. Bizarre though the
theory seemed, it yielded answers that
checked the results of experiments
that no theory had been able to ex-
plain before. Bohr began by applying
that theory to the planetary model
of hydrogen, confining attention to
the possible circular orbits of the
single electron in the atom and re-
quiring that the electron's angular
momentum be "quantized," or, in other
words, take only certain definite
values.

It is remarkable that his consid-
eration of this simple example enabled
Bohr to formulate two far-ranging
postulates that remain valid today,
despite the radical revision of the
quantum theory that began in 1925.
Bohr's first postulate asserts that
an atomic system can exist in certain
stationary states without radiating
its energy. Each state corresponds
with a definite value of the total en-
ergy E of the system. A transition of
the system from one stationary state
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to another is attended by a gain or

loss of energy, in an amount equal to

the difference between the energies of

the two states. That energy difference

may be emitted or absorbed as radia-

tion, or transmitted to or from some

other atomic system. Bohr's second

postulate relates to the frequency of

the radiation emitted or absorbed by

the system when it makes a transition

between two states. It the energies of

the two states are E2 and El, the fre-

quency of the radiation is given by

hv = E2 El.
These postulates provide a pro-

gram for calculating from experimental

data the energies of the presumed sta-

tionary states of the electron in a

hydrogen atom. First, measure in a

spectrometer the frequencies of all

the radiations that hydrogen emits

when it is excited, Second, convert

the frequencies to energy differences

by using Bohr's rule. Third, find what

energies E form a consistent set that

yield these differences (Fig. 3.2).

The success of Bohr's calcula-

tions (Discussion 3.1) for his model

of hydrogen spurred others to develop

generalizations of his theory, suited

to a wider variety of mechanical sys-

tems. But when these methods were ap-

plied to atomic systems only slightly

more complicated than the hydrogen

atom, they were unsatisfactory. They

could not be made to yield the energy

levels spectroscopically determined in

helium, the atom with two eloctrons in-

stead of just one. Nor did they give

correct answers for the "hydrogen

molecule-ion" - the hydrogen molecule

from which one electron has been re-

moved and the one remaining electron

circulates about two nuclei. And they

offered no convincing explanation of

why the alectrons in a many-electron

atom should adopt configurations dis-

playing the "shell" structure that had

been proposed by Thomson to explain

the behavior summarized in the peri-

odic table.
Chemists pursued Thomson's pro-

posal nevertheless, assuming that a

satisfactory physical justification

0

0
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LYMAN BALMER PASCHEN BRACKETT

SERIES SERIES SERIES SERIES

Fig. 3.2 Some levels of energy in the hy-

drogen atom, worked out from the observed

spectral frequencies by using Bohr's fre-

quency postulate, hv = E2--E1. The various

series of spectral frequencies are named

for the spectroscopists who examined them.

The Lyman series lies in the ultraviolet

frequency range. Some frequencies of the

Balmer series lie in the visible range.

The Paschen and Brackett series lie in the

infrared range.

for the idea of shell structures would

eventually support its chemical plausi-

bility. Especially by W. Kossel, G. N.

Lewis, and I. Langmuir, formal elec-

tronic pictures were constructed from

1916 onwards, setting in order the

chemical behavior of the atomic spe-

cies. Kossel paid especial attention

to the circumstances in which one

atom would transfer electrons to an-

other, making each atom an ion with

the electronic configuration of a

rare gas atom. Lewis showed that chem-

ical bonds not ascribable to the trans-

fer of electrons - for example, the

bond between the two hydrogen atoms

in a hydrogen molecule - can be ex-

plained by supposing that the atoms

acquire the electronic configurations

of rare gas atoms by sharing elec-

trons4.
In 1924, Louis de Broglie opened

an entrance to the path that physi-

cists and chemists have followed since

in developing the mechanics of elec-

4The bonds formed between atoms in chemical com-

pounds are discussed in detail in Bonds Between

Atoms, a monograph in this series.
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Discussion 3.1

QUANTIZING CIRCULAR ORBITS

For his first model of the hydro-
gen atom in 1913, Bohr assumed that
the one electron moves at a speed v in
a circle of radius r centered on the
nucleus. Then Coulomb's law gives the
attractive force between the nucleus
and the electron as e2/r20 where e is
the magnitude of the electronic charge
and the nuclear charge alike. Since
this force is the centripetal force
that keeps the electron on the circle,
given by mv2/r, where m is the mass
of the electron, the radius of the
circle is related to the velocity of
the electron by

MV2 e 2

21g 2r r
(D3.1)

On such an electronic motion,
Bohr imposed the quantum conittion
that the angular momentum of the elec-
tron about the nucleus should be able
to adopt only those values that are
integral multiples of h/27T, where h

is Planck's constant.

mvr (D3.2)

where n is an integer. Then the per-
mitted radii are obtained by eliminat-
ing the velocity between (D3.1) and
(D3*.2):

n2h2
r =

47T2e2m.
(D3.3)

In other words, the radii of the per-
mitted orbits vary as n2. The small-
est permitted orbit, obtained by set-
ting n = 1 and using the values
e 4.77X 10-1 ° esu, m =9.035X 10-28g,
and h ==, 6.55 X10-27 erg sec, turns out
to have a radius a = 0.528 X 10" cm.

In order to compare this model
of the hydrogen atom with experimental
measurements on hydrogen, the energies
of the electron in the various per-
mitted orbits must be calculated, and
their differences must be compared
with the frequencies of observed spec-
tral lines by using Bohr's second
postulate

E2 (D3.4)

The potential energy of the electron
at a distance r from the nucleus, rel-

ative to a zero of energy for an elec-

tron infinitely distant, is

Upot
e 2

(D3.5)

In the expression for the kinetic en-
ergy of the electron, iniv2, Eq. (D3.l)

can be used to eliminate the velocity,

and hence

a2

Ukin 2r"
(D3.6)

Thus the total energy of the electron
is obtained with the assistance of Eq.

(D3.3) as

2

E = 111- kin Upot
2r

2712e4m
h2n2

(D3.7)

Hence, on passing from an outer
orbit with energy E2 to an inner Orbit

with energy El, the electron should
emit radiation with the frequency
given by (D3.4) as

1111
211'2 e4 m 1 1

h2 n12 n22)'
(D3.8)

Spectral lines are ordinarily measured
in terms of the wavelength A rather
than the frequency of the radiation,
and the data are converted to "wave
numbers," V = 1/A. Since Ay = cl where
c = 3 X 101° cm/sec is tne velocity of
light, Eq. (D3.8) is best converted
for comparison with experiment into

ii = (
12

2

1
)RH ,n 2

(D3.9)

Where RN= 2y2e4m/h2c is known as the
Rydberg constant. The startling suc-
cess of Bohr's model lay in the facts
(1) that the observed lines of the hy-
drogen spectrum could indeed be in-
dexed by such numbers as n1 and n2 in
Eq. (D3.9) and (2) that the calculated

value, RE- 109677.76 cm-2, agreed with

the observed value, 147.109678.18 cm'.
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trons in atoms and molecules. He sug-
gested that a train of waves might be

essentially associated with any parti-
cle. His idea reciprocated Albert Ein-
stein's earlier suggestion that light,
p'iously thought of as waves, be-
haves in some respects like a stream of
particles, the photons. Taken to-
gether, the two suggestions imply a
curious symmetry in nature, by which
both wavelike and particlelike behav-
ior can be discerned in all of na-
ture's fundamental processes.

Three years later, Clinton Davis-

son and Lester Germer confirmed de

Broglie's idea by experiments in
which electrons were diffracted by a
crystal of nickel; all agreed that
diffraction is a phenomenon to be ex-
pected of waves, and not of "particles"
as they had previously been understood.

And already in 1926; without waiting
for such confirmation of de Broglie's

idea, Erwin Schroedinger had moved
ahead to develop a wave mechanics
which treats all particles as if they

were waves. He used it 1.do explain the

same spectroscopic data from hydrogen

that had supported Bohr's earlier
model, and wrote, "The new conception
can be generalized, and I believe that
it penetrates deeply into the true na-

ture of the quantum rules."
Since then, wave mechanics has

been rapidly extended, explaining suc-
cessfully such matters as the bonding
of atoms in molecules and solids, and
the behavior of electrons in them.
This newer mechanics pictures an atom

as a positive nucleus surrounded by a

continuous distribution of negative
electricity with a variable density,
contribuJ;ed by all the electrons. The
stationary states5 permitted to the
electrons are mathematically analogous
to the standing waves of vibration
permitted in a stretched string held
at both ends, or in a vibrating drum-

head.

5A monograph in this series, Wave-Mechanical
Properties -f Stationary States, summarizes
those aspects of wave-mechanics that are used

in the remainder of this monograph.

The classical picture and the
newer picture of an electron in an

atom can be compared most readily by

looking at the simplest imaginable
case of a confined particle. Imagine
a particle free to move along a line

but confined within a definite seg-
ment of it. More graphically portrayed,

the particle fiilds itself within a
tube of narrow bore, capped at both

ends. In the classical picture, the

particle rushes back and forth along
the line, reversing the sign of its

momentum, p, each time it is reflected

at an end of the line.
De Broglie's proposal pictures

the particle by a wave, of wavelength

A, and connects that wavelength with
the momentum by the relation

p = h/A, (3.1)

where h is Planck's contant. Since
the particle is confined to the line

segment, of length L, its wave must
vanish outside that segment, and it

must fall smoothly to zero at each
end of the segment. The wave is of

sinusoidal form, and hence its wave-
length can be no greater than twice
the length of the segment, as Fig. 3.3

suggests.
The wavelength can be shorter

than that; but in order to fulfill the

same requirements, it can take only
certain definite values. It must be an
integral submultiple of the maximum
wavelength (Fig. 3.4). Thus the rela-

Fig. 3.3 The de Broglie wavelength A of a

particle, restricted to a line segment of

length L and moving freely within that re-

striction, cannot be greater than 2L.



16 THE NATURE OF ATOMS

Fig. 3.4 The permitted waves for a parti-
cle restricted to a line segment L have
wavelengths given by n A/2 = L, where n is

an integer.

tion (3.1) proposed by de Broglie re-
stricts the momentum of the particle
to definite values corresponding with
those possible values of the wave-

length.
If the particle is subject to no

forces within the line segment to
which it is confined, its potential
energy can be taken as zero every-
where within that segment. Since its
energy is then entirely kinetic, and
equal to p2/2m where m is its mass,
its permitted levels of energy can be
written at once as

h2n2

8mL.
(3.2)

Notice two unexpected conse-
quences of this way of picturing a
confined parttcle. In the first place,
the particle cannot be at rest. Be-

cause its maximum wavelength is finite,
its minimum momentum is not zero, ac-
cording to (3.1). Indeed, the more
closely it is confined, the faster it
must move and the greater its kinetic

energy must be. In the second place,

its energy can have only certain well-
defined values and cannot take inter-
mediate values, according to (3.2).

Both these consequences are more
general than this example might sug-
gest. In particular, the permitted en-
ergies, associated with permitted or-

bits by the earlier atomic theory,
become associated with permitted waves
in the newer. As Schroedinger wrote in

his first paper on wave mechanics,
"The introduction of integers arises
in the same natural way as, for ex-
ample, in a vibrating string, for
which the number of nodes is integral."

The particle whose behavior has
just been examined is often called
"the particle in a box." It is con-
venient to think of this and of any
other confined particle as moving in
a yotential well, whose shape is vis-
ualized by plotting the potential en-
ergy of the particle as a function of

its position, x. For thr particle in
a box, the potential energy is zero
everywhere inside the well and infi-
nite everywhere outside it. The ener-
gies permitted to the particle can be
plotted at appropriate levels in the
well (Fig. 3.5).

In shifting attention to a parti-
cle in a potential well with some
other shape, the determination of the
waveforms and the associated energies
is complicated by the fact that the
momentum of the particle, and thus its
wavelength, will vary as it proceeds
across the well. The wavelength is
connected with the kinetic energy, by
way of the relations Ukin = p2/2m and
p = h/A; but it is the total energy E,

and not Ukin, that is conserved in the
motion.

A suitable way for describing a
particle whose wavelength varies with
its position is suggested in Discus-
sion 2,2. The discussion develops a
differential equation whose solutions
specify appropriate wave shapes. As in
the case of the particle in a box, the
only acceptable solutions to the equa-
tion are those which approach zero in
regions where the potential energy of
the particle increases rithout limit.
Again it turns out that those solu-
tions correspond with a set of dis-
tinct values of the total energy E.

A familiar example of a confined
particle is the simple harmonic os-
cillator: a particle attracted toward
a fixed point by a force that in-
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OlOcussion 3.2

A PARTICLE WITH VARYING WAVELENGTH

When the potential energy of a
particle varies with its position, its
momentum will vary also, and thus its
"Wavelength" will not be uniquely de-
fined. A way to find the right forms
Of the waves for the particle in such
a case can be suggested by the follow-
ing argument. But the fact that this
way will turn out to be correct can-
not be proved by such an argument.

Examine first the sinusoidal
waveforms of the simple waves with
well-defined wavelengths shown in
Fig. 3.4. Each is described mathema-
,

tiaally by

0 = A sin 21-r x.
X

(D3.10)

Differentiating (D3.10) twice with re-
spect to x yields

42
2ir

dX2 A *A2 sin x. (D3.11)

Sot the wave form 0 has the property

47r2_ zp.

dx2 A2 (D3.12)

Now assume that 0 will possess
,44is property even when X varies with
X. In order to examine the results of
'Oat assumption, X can be expressed
.11-1 terms of the way in which the po-

-'tintia/ energy varies with x, by using

creases in direct proportion to its
distance from that point. When the
origin of the coordinate x is chosen
at the fixed point, and the potential
energy of the particle is taken to be
zero when it is at that point, the re-
storing force can be described by
F = -kx, and the potential energy by
V = ikx2, where k is a constant that
measures the "stiffness" of the oscil-
lator. In other words, the well has
a parabolic shape. Then it can be

de Broglie's relation (3.1) in the
following way.

The total energy E Ukin + V,
where V is the potential energy.
Hence

Ukin E V, (D1.13)

and thus by (3.1)

X mmV2m(E-V).
(JL3.14)

Substituting the expression (D3.14)
for A in (D3.12) finally yields

87r2m

dx2 112
km - V)0 - 0. (D3.15)

This is Schroedinger's equation
for describing the wave shape of a
particle moving in one dimension. The
particular wave shapes sought are
those solutions to the equation which
are physically sensible. When the
particle is bound to a potential well,
the only sensible solutions are those
which approach zero as the particle
departs increasingly from the well.
Invariably such solutions can be found
only for certain definite values of E.
Thus there arise discrete permitted
"states" for the particle, each with
an associated value of the total en-
ergy.

shown6 that the permitted energies are
evenly spaced along the energy scale,
increasing in increments of hv where
v is the frequency of the oscillator,
and that the lowest permitted energy
is ihv.

Turning finally to the electron
in a hydrogen atom, you find that the

6The simple harmonic oscillator is discussed
quantitatively in Wave-Mechanical Properties of
Stationary States.
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appropriate well, described by Eq.
(D3.5), has three features that are
qualitatively different from the fore-

I

I

I
n = 5, E 25

n = 4, E 16

n = 3, E 9

n = 2, E --# 4

n = 1, E 1

Fig. 3.5 The energy of a particle re-
stricted to the line segment of Fig. 3.4
can take only certain values proportional
to n2 where n is an integer.

a

going wells. First, this well has no
natural bottom but descends indefi-
nitely, narrowing as it goes. Second,
the well has a natural top, which now
provides the natural zero of potential
energy. And third, the well has more
dimensions because it is appropriate
to a particle moving in three dimen-
sions instead of one. By displaying a
cross section of it, as if the elec-
tron were constrained to move along a
single line through the nucleus, Fig.
3.6 contrasts the atomic well with the
wells for the box and for the harmonic
oscillator.

The behavior of an electron mov-
ing in such a well is analyzed exactly
in Chapters 5, 6, and 7 of this mono-
graph. Again there is a lowest per-
mitted level of energy, corresponding
with a wave shape called the gTound
state, and the other permitted ener-
gies form a discrete set. With in-
creasing energy, however, the per-
mitted levels pack closer together on
the energy scale. And when the elec-
tron has an energy greater than zero,
all energies are permitted to it; it
has escaped from the well and can
cruise through space unhindered, and
the waves that describe it no longer
approach zero as it departs from the
well. The distributions of energy
levels characteristic of the three
wells of Fig. 3.6 are contrasted in
Fig. 3.7.

Notice that the wave-mechanical
model of the hydrogen atom possesses

Fig. 3.6 Potential wells for (a) a parti-
cle in a box and (b) a harmonic oscillator;

.0

and (c) a cross section of the well for the
electron in a hydrogen atom.
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En n2

MMI E =0

a

Fig. 3.7 Some permitted energy levels En

for (a) a particle in a box, (b) a harmonic

the quantitative property that marked

the greatest achievement of Bohr's

planetary model (Discussion 3.1); the

permitted energies are spaced as 1/n2

where n is an integer. Moreover the

wave-mechanical method can be ex-

tended successfully to the more com-

plicated cases for which the planetary

method failed. But the successful ex-

tension of any model to explain the

electronic shell structures of atoms

with more than two electrons must in-

voke two further properties of the

electron, discovered in 1925.

The first is the fact that an

electron behaves as if it were a spin-

ning ball; it exhibits an intrinsic

angular momentum about an axis through

its center. Furthermore, that angular

momentum appears to be very rigorously

quantized. In the first place, it has

a fixed absolute value, the same for

all electrons. In the second place,

whenever a system contains more than

one electron, the spin of each is

either in the same direction or in

the opposite direction to the spins

of its companions. Hence the descrip-

tion of any electron, begun by speci-

fying its wave, must be completed by

specifying whether its spin is "up"

E =0

oscillator, and (c) the electron in a hy-

drogen atom.

or "down."
The second property is another

unexpected limitation placed on each

electron by the presence of companion

electrons. Apparently no two electrons

can have the same spin and the same

wave at once. If two electrons have

the same wave, one must direct its

spin "up" and the other "down," and

no third electron can have the same

wave. In consequence of this exclusion
principle, each of the possible waves

in an atom can be ascribed to no more

than two electrons. Since the possible

waves are spacially distributed in a

somewhat shell-like way, the property

described by the exclusion principle

forces additional electrons to acquire

waves that fall in shells correspond-

ing with successively higher.' energies.

In this way the periodic table can be

understood in much detail, as Chapter

8 describes.
The remainder of this monograph

is devoted to examining more exactly

the wave-mechanical picture of an

atom. For an introduction to the ex-

act study, the next chapter discusses

some examples of the waves for parti-

cles moving in one dimension in a well

which, like the atomic well, has a top.
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The last chapter portrayed an atom as
consisting of electrons in a "well."
The well is constructed for the elec-
trons by the attraction between their
negative charges and the positive
charge on the atom's nucleus. When the
atom is stationary as a whole, the nu-
cleus is substantially stationary also,
because any atomic nucleus is at least
2000 times heavier than an electron.

In beginning a more exact study
of the behavior of the electrons in an
atom, it is helpful, therefore, to ex-
amine the expected behavior of elec-
trons in stationary wells which,
though rather artificial, are simpler
than atomic wells. Much can be learned,
for example, by neglecting the three-
dimensionality of an atomic well, and
concentl ting first on the fact that

such a .1 has a top.
The simplest one-dimensional well

that has a top can be constructed by
chopping off, at some finite point,
the infinitely high top of the more
familiar "box" shown in the last chap-
ter. To be sure, the res...lting well
differs from that for the atom by hav-
ing a bottom. But only such a bottom
will keep the electron from falling
indefinitely down the well, so long
as the walls of the well are a finite

distance apart. Figure 4.1 shows the
suggested well, of depth IVI and
width iL, with its top rather than its
bottom now placed at the zero of en-

ergy.

Fig. 4.1 The one-dimensional box with
walls of finite height.

20

Before diving into the formali-
ties of this problem, pause to look at
the physics of what you are doing. If
the box had infinitely high walls, an
electron inside it would be obliged to
have at least the kinetic energy of
the ground state of such a box. When
the height of the walls is reduced,
you might expect that there would
come a point at which the kinetic en-
ergy exceeds the loss of potential
energy that the electron experiences
while it is in the box. In other words,
the total energy of the electron would
become positive, and it would leap out
of the box.

Of course, when the walls are not
indefinitely high, the electron will
certainly stray outside the box, even
when its total energy is negative,

into regions where classical mechanics
would say it could never stray. This
straying will reduce its kinetic en-
ergy in the ground state, by reducing
its effective confinement and increas-
ing its de Broglie wavelength. But at
the same time this will increase its
average potential energy - make that
energy less negative - because while
it is outside the box it is not get-
ting the advantage of the lower poten-
tial energy inside the box.

From these arguments you might
expect, but you cannot be sure, to
find boxes so narrow and shallow as
to offer the electron no bound states
at all. As a matter of fact, it turns
out that there is at least one bound
state for any box. But there can at
best be only a finite number of such
states, for their energies must be
less than that of the top of the box,
and greater than that of the bottom of
the box; and since the top of the box
does not flare outward, the permitted
energies cannot pack closer together
near the top as they can in an atom.

It is instructive to work in de-
tail the problem of the box shown in
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Fig. 4.1, for some of the ideas that

emerge are useful in other problems.
Schroedinger's equation (see Discus-
sion 3.2) for the stationary states is

h2 d20
Sem dx2

+ [E V(x)] 0 0, (4.1)

where E is the electronic energy as-
sociated with the elec'zronic state 0,

V(x) is the potential energy of the
electron when its coordinate has the
value x, m is its mass, and h is
Planck's constant. *dere V(x) is not an
analytic function of x at the boundar-

ies of the box, but everywhere else it

is the simplest sart of function: zero
outside the box, and V (a negative
constant) inside. Hence we can seek a
solution to the equation which applies
outside the box, and a solution for

the same value of E to the equation
inside the box, and match the two so-
lutions properly at the boundaries of

the box.
Equation (4.1) and the conse-

quences that flow from it can be writ-

041cOssIon 4.1

ten more simply if the factor h2/87r2m

is removed at the outset by changing

the scale of wme of the quantities in

the equation. The usual way to do this

in atomic problems is to express ener-
gies and distances in the "atomic
units" described in Discussion 4.1.
The equation then reads

d20

dx2 EE
V(x).10 =

For the wave functions 00 outside the

well, the equation is

and for the wave functions
the well, the equation is

The bound states of the electron

are those whose values of E are less
than zero, or below the top of the

ATOM:C UNITS

When Schroedinger's equation is
Written for electrons, it is custImary
Afe simplify the appearance of the
,ftlustion by using atomic units of
Aength and energy. The atomic unit of
4Ongth is

ao 4g2me2f

h2

-el energy is

mr2m2e4
Wh 2°

h2

*here h is Planck's constant and e and
:are the charge and mass of an elee-

,ron. Then, starting with Schroedin-
s equation in ordinary units for

svpiole moving in one dimension,

and making the substitution

21r8me4
2g2me4

E vo

converts the equatn to

d2P r

+ LE V(x)hp '6 0.
dx2

It is noteworthy that the atomic unit

of energy (often called the Rydberg)
is the negative of the energy of an

electron in the ground state of a hydro-

gen atom, -13.53 electron volts, and

the atomic unit of length is equal to
the radius of tne corresponding "Bohr
orbit," 0.53 X 10-8 centimeter (see

DisCuission 3.1).
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well. Honce E is negative in Eq. (4.3)
for the states of interest, and the
most general useful solution is

00 = A.,e2,13 1/7-E x + Aexp -1t x (4.5)

where A+ mnd A_ are arbitrary con-
stants. But these functions must be so
chosen thrA they do not increase with-
out limit as the electron goes infi-
nitely far from the well. Hence the
wave funct:.ons to the left of the well
must be

Ok * A exp x, (4.6)

and those to the right of the well
must be

Or " Ar exp x. (4.7)

Inside :he well, V is negative,
and E is les:; negative because E is
above the bo7;tom of the well. Since
E-V is posit:Are, the general solution
to Eq. (4.4) is

= As sin -vr=Vr x + Ac cos ,,tE - V x.

(4.8)

PreviouE work7 with symmetrical
wells leads you to expect that the
wave functiors for this case will be

either symmetric or antisymmetric
about the center of the well. Then, if
the zero of N is chosen at the center
of the well, those two sorts of solu-
tions should take the forms:

Sym: Of = Ao exp 47-E x,

Or = Ao exp

Oi = Ai cos VE - V x;

Anti: Of = Ao exp 4=E x,

Or = -A0 exp x,

Oi = Ai sin 4E7z71-rx.

(4.9)

7For example, thy particle in a box and the
harmonic oscillator, discussed in Wave-Mechanical
Properties of Stationary States.

Turn now to matching the various
parts of these functions at the places
where they must join:

Of to Oi at x = k/22 and Or to 01.

at x = + k/2. By (4.9) those require-
ments imply

for Sym: Ao exp - V:i12/2

= Ai cos VE Vk/2;

for Anti: Ao exp -1F-TE)2/2

= -Ai sin VE V/2.

(4.10)

But there is another requirement: the
slopes of the functions must match
at these points, as well as the func-
tions themselves. This requirement
emerges from looking at what would
happen if the slopes did not match. If
at some point the slope of a function
has a discontinuity, then at that
point the rate of change of the slope
is infinite. The rate of change of
the slope of 0 is d20/dx2, and Eq.
(4.3) and (4.4) say that d20/dx2 can-
not be infinite so long as E, V, and
0 are finite. When Eq. (4.9) is dif-
ferentiated, the additional require-
ment can be written:

For Sym: Ao exp - V-7.E.U2 =

= Ai - V sin V11/2;

(4.11)

For Anti: Ao .yrY exp

= Ai YE -Ndcos TIE - V.12/2.

Eliminating Ao and AI between (4.10)
and (4.11) yields the equations that
determine the permitted energy levels:

For Sym: tan VE V.Q,/2
1/V - E'

For Anti: tan VIE - E
E

(4.12)

These are transcendental equa-
tions. For some given values of V and
k which specify the box, the values
of E that satisfy these equations are
the permitted energy levels. The cos-
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jest way to see what these roots will
be like is to express E as a frac-
tional multiple of V, the depth of the
well: E = E V. Then Eq. (4.12) becomes:

.6/7V ,
For Sym: tan vl E

2

(4.13)

For Anti: tan V1 E =
1/1 E.

2

The factor k1F-V/2 now specifies the
well, and E can run from 0 to 1. Fig-
ure 4.2 shows what the right sides of
the equations look like, and Fig. 4.3
shows what 1577-E looks like.

5

4.2 Plots ofi and V1 E, to

assist in inferring the roots of Eq. (4.13).

If tr--17 is less than r, the left

sides of the equations never become
negative, and thus there is no anti-
symmorxic state. There will always be

a symmetric state, however, for with
increasing c the left side decreases
monotonically from tan 124--717/2 to zero

while the right side of the first of

Eq. (4.13) increases monotonically
from zero to infinity; and there must
be a value E = co for which the two
sides are equal (Fig. 4.4). The smal-

1.0

.8

.6

.4

. 2

0 .2 .4 .5 .8 1.0

Fig. 4.3 Plot of 4177.F, for the signifi-

cant range of E.

.8

.6

.4

.2

0

--

1/ c
V1

Yr:7i'
MI

1 2

0 E. .4 F .8 lA

Fig. 4.4 The only root of Eq. (4.13) when
= 1.
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Fig. 4.5 The wave function of the particle
in its ground state in the one-dimensional
box with finite walls.

ler the value of N=7V-7, the smaller eo
will be; in other words, as the well
gets narrower or shallower, the energy
of the bound state gets nearer the top
of the well, but there is always a
bound state. Figure 4.5 shows roughly
the shape of the wave function.

When f.FV is greater than r, an
antisymmetric solution becomes pos-
sible; when f.F-V is greater than 2r,

a second symmetric solution appears;
and so on. At the same time, the val-
ues of E corresponding to the solu-

tions first found approach nearer and
nearer to unity. In order to follow
what happens as this process contin-
ues, take ki:=Vr= Nr where N is a very
large number. Then there will be a
root of Eq. (4.13), alternately sym-
metric and antisymmetric, somewhere in
each of the ranges .%/1 E = 0 to 1/N,

1/N to 2/N, 2/N to 3/N, and so on.
Taking the upper bound of each range
as approximating a value of 1/1 E

which yields a root, and remembering
that 1 E measures the fractional dis-
tance of an energy level above the
bottom of the well, you see that the
sequence 1 E = 1/N22 4/N2, 9/N2 ...
n2/%1.A 2 corresponds to the distribution
of energy levels for the box with in-
finitely high walls. Here, however,
the sequence breaks off at n = N.

Starting with a well in which
LFIT is large and then reducing it,
you can think of the progressive dis-

appearance of the higher-energy states
as a process of squeezing them out of

the well (if you reduce f) or pushing
them up out of the well (if you re-
duce V). There is an especially simple

a

POTENTIAL ENERGY =0

POTENTIAL
ENERGY = V (NEGATIVE)

Fig. 4.6 The wave function of the particle
moving in one dimension in the only bound
state which the one-dimensional delta-well
affords.

sort of well which can be constructed
by a limiting process in which all but
one state is squeezed out by letting
i go to zero, and that one state is
preserved by letting V become negative-
ly infinite. That well is infinitely
narrow and infinitely deep: the "delta
well."

Figure 4.5 and Eq. (4.2) provide
the means for guessing the form of
the state that the delta well pre-
serves. The wave function will fall
off exponentially from the well in
both directions. The space inside the
well, within which the wave function
of Fig. 4.5 "turns around," is now re-
duced to nothing, and the wave func-
tion must turn around infinitely
rapidly at the location of the well,
exhibiting a "corner" there. But that
is consistent with Eq. (4.2), which
says that since V(x) is negatively
infinite at the well, the rate of
change of the slope is infinite, un-
less the wave function vanishes there.
The wave function will look like Fig.
4.6, its mathematical form is derived
in Discussion 4.2.
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Discussion 4.2

THE DELTA WELL

The wave function for the state
of a particle in the presence of a
delta well can be found in the follow-
ing way. Since the entire function is
outside the well, Eq. (4.3) applies
everywhere except at the point x 0,

and tka Eiolutions (4.6) and (4.7) are
appropriate for the two sides of the
well. Since they must match at the
well, Ai ... Ar. It remains to determine
what is the relation between the
slopes on the two sides - what is the
angle at the corner.

That relation comes from inte-
grating Eq. (4.2) across a well that
is taken to be very narrow and very
deep, and then proceeding to the limit.
At the well V is so large (negatively)
that E is negligible in Eq. (4.2);
hence the equation can be multiplied
by dx and written

dO
d VO dx.

dx
(D4.1)

The width L of the well is so small
that 0 retains its value for x 0

You will find the "delta well" a
convenient rough model for an atom in
a later discussion of the two-e3ectron
atom (Chapter 9). It can also give in-
sight in discussing the chemical bond
and the behavior of electrons in sol-
ids. This model strips the atom down

over that small distance, Integrating
(D4.l) oveT i. yields

dx Ix.° dx1

dOi
1x..0 0(0'",

ALE

which becomes

vi. (D4.3)

Thus E acquires a finite value if i.
approaches zero and V approaches
minus infinity in such a way that the
product is finite. It Ls convenient to
denote that product V/ by minus the
positive constant 71, so that

Nr-T-
2

(D4.4)

Thus a single parameter n specifies
the well, and also through (D4.4) the
energy of the bound state associated
with it and the wave function

A exp (/2),

Or m A exP (-n/2)x.
(D4.5)

to a minimum: a one-dimensional well
that has a top and no bottom. The en-
ergy in the one bound state that the
well affords can be adjusted to cor-
respond with the energy in any particu-
lar state of any particular atom.

PROBLEMS

4.1 Determine the value of the con-
stant A in Eq. (D4.5) which normal-
izes the wave function for the
bound state associated with a
delta well.

4.2 Describe the justification for the
three steps in the following calcu-
lation of the expectation value of
the potential energy of an elec-

tron in the bound state associated
with a delta well, where A is the
normalizing constant:

00

upot = f zp*Arzpdx = A2firdx (inte-
--00

grated over the distance i)

= A2n.
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4.3 Using the results of Problems 1
and 21 calculate the expectation
value of the kinetic energy of an
electron in the bound state asso-
ciated with a delta well.

4.4 Present two arguments, one from
the law of conservation of energy,
the other from the shape of the
wave function, both showing that
the kinetic energy of an electron

in the presence of a delta well
will be negative while it is out-
side the well but in the bound
state.

4.5 Show that the negative kinetic en-
ergy of an electron while it is
outside a delta well, but in the
bound state afforded by that well,
is precisely the total (negative'
energy of the electron.
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In an atom, an electron is actually in

a three-dimensional well, not a one-
dimensional well such as the last
chapter discussed. The most important

new feature that three-dimensionality
introduces is the possibility that
the electron can "revolve in an orbit,"

acquiring angular momentum about the

nucleus. The uncertainty principle of
quantum mechanics places limits on
how much can be known about that angu-
lar momentum.8 In the case of a parti-

cle in a central field, the principle

allows you to specify only two aspects

of the angular momentum independently
and simultaneously: the absolute value

of the total angular momentum, and the

value of the component of angular mo-
mentum about one chosen axis.

Now, of course, an isolated atom

offers no special axis to choose, un-
less an applied magnetic or electric

field or the like establishes a spe-
cial direction in space. Nor does an

atom in a "cubically symmetric" en-

vironment offer a unique axis: the

atom cannot distinguish between the

cubic axes x, y, and z. In the first

place, then, examine wiLlat can be

learned about the angular dependence
of the wave functions for the states

of an electron in an atom without in-

troducing a preferred axis, postponing

consideration of its angular momentum
to the next chapter.

When only one electron is present,
the nucleus of the atom presents the

electron with a potential well that is

spherically symmetrical: V = Ze8/r,
where r is the distance of the elec-

tron from a nucleus of atomic number

Z and charge Ze. The discussion in

this chapter confines its attention to

the fact that V is a function only of

r, without concern for the exact form

"The uncertainty principle, and its application
to angular momenta, are discussed in Wave-
Mechanical Properties of Stationary States.
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A CENTRAL FIELD

of that function. In other words the
derived results are limited only by
the fact that the field in which the

electron moves is a "central field."
Schroedinger's equation for the

stationary states of the electron in

a central field, written in atomic

units (Discussion 4.1), reads

a20 a20 a20

ax2 ay2 az2

(5.1)
+ [E v(r)]0 = 0,

where r = x2 y2 z2. The method

usually used for finding he desired

solutions to this equation begins by

transforming from the coordinates
(x, y, z) to spherical polar coordi-
nates (r, 0, 0) centered on the nu-
cleus. But as Fig. 5.1 shows, the
transformation to (r, 0, 0) subtly in-
troduces a unique axis, the polar axis
fro:). which the angle of colatitude 0

is measured. It is worth-while to pur-
sue a method somewhat less usual,

which retains the Cartesian axes, so
that the resulting expressions are
flinctions of x, y, and z, and are ap-
propriate to a choice of three equival-

ent mutually perpendicular axes rather

than one unique axis.
In either case the method of solu-

9,6)

Fig. 5.1 The transformation of coordinates
from (x,y,z) to (r,0,0) gives the z direc-

tion a unique position.
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Fig. 5.2 The direction cosines of a vector

r relative to the axes are cos a x/r,

cos p = y/r, cos y = z/r.

tion proceeds by "separation of vari-

ables." Using spherical polar coordin-

ates, you would seek solutions of the

form RCM), where R is a function of

r alone, 0 of 0 alone, and 'to of 0

alone. Using Cartesian coordinates,

you seek solutions of the form RL,

where R is again a function of

r = 372 + -2z alone and L is a

function of direction alone. Direc-

tions can always be specified by "di-

rection cosines." Figure 5.2 shows

that in Cartesian coordinates the di-

rection cosines of the direction from

the origin of coordinates to the point

(xly,z) are x/r, y/r, z/r. Hence L

Discussion 5.1

will be a function of x/r, y/r and z/r.

Notice thai; x/r, y/r and z/r are homo-

geneous functions of x, y, and z, of

degree zero, and thus that L must also

be such a function. The substitution

0 = RL in Eq. (5.1) yields

Lra2R ,2R a2R1 a2L a2i1

Lax2 a372 az2J LaX2 ay2 aZ2

2Fat a al 22. aL
Lax ax ay ay az az j

+ [E V(r)]RL = 0. (5.2)

First examine the third bracket,

containing the products of first de-

rivatives. Since R is a function of r

alone, wax = dR/dr ar/ax, etc. But

differentiation of r = Vx2 y2 z2

yields ar/ax = x/r, etc., and hence

the bracket becomes

2/ 2b)dR
x Y zx. ax ay az dr.

It is useful to apply to this bracket

Euler's theorem for homogeneous func-

tions, derived in Discussion 5.1. Ac-

cording to that theorem, if F is a
homogeneous function of x, y, and z of

degree n, then xaF/ax + yaF/ay

+ zaF/az = nF. Since L is a homogene-

ous function of degree zero, n = 0,

and this bracket vanishes.

EULER'S THEOREM FOR HOMOGENEOUS FUNCTIONS

A function of several variables
is homogeneous of order n if the re-

sult of multiplying each of the vari-

ables by a constant A is the same as
multiplying the function by a power n

of the constant:

f(Xx, Ay, Az) = Anf(x, y, z).

Now temporarily regard A as a variable,

and differentiate that defining ex-
pression partially with respect to A.

This operation produces:

On the left,

af a(Ax) Of a(Ay)

8(Ax) OA a(Ay) 8A

af a(Az)

O(xz) ax xa(Xx)

af57(375 za(xz),

on the right, n A"lf.

Then, setting A - 1, you obtain

Euler's result,

Of af af

xax--
+ y-- + z-- nf.

ay az
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Look next at the first bracket in
Eq. (5.2). A second differentiation
like that of the last paragraph gives

a2R r 2 dR a 2r

3x2 dr2 ax dr 3x2

x2 d2 R (1 1c2) dR

r2 dr2 7
etc.

r2 dr'

(5.3)

Hence the first bracket in Eq. (5.2)
becomes ad2R/dr2 + (2/1)(dR/dr)].
When the second brzcket is transposed
to the right side, and the equation is
divided by RL, it can be rewritten

1(d2R 2 dR)

R dr2 4- -;
+ E V(r) =

dr

1(a2L a2L a2L
L ax2 ay2 aZ2).

(5.4)

At this point it is tempting to
paraphrase the argument usual in
a separation of variables, saying
"the left side of Eq. (5.4) is a
function of r alone, and the right
side is a function of direction alone;
each must therefore be equal to a
constant k, independent of both r and
direction." But that argument would
not be valid here: L is a function of
direction alone but its derivatives
are taken with respect to coordinates,
not directions, and thus are not func-
tions of direction alone.

The suggested argument therefore
requires a slight modification. Every
time a homogeneous function is differ-
entiated with respect to one of its
variables, a new homogeneous function
arises of an order one less than that
of the original function. Hence the
right side of Eq. (5.4) must be a
homogeneous function of order minus
two. Now the only homogeneous function
of that sort which is a function of r
alone, and thus can equal the left
side of Eq. (5.4), is k/r2, where k is
a constant. Hence each side of (5.4)

can be set equal to k/r2, and the
separated equations can be written:

d2 R 2 dR [ k
+ E V(r)] R = 0;

dr2 r dr

(5.5)

a2L a2L a2L

ax2 ay2 aZ2 r2L 43.
(5.6)

Solutions to Eq. (5.5) will give the
radial dependence of the wave func-
tions. Solutions to Eq. (5.6) will
give the directional dependence, which
is of primary interest at the moment.

The solutions for L must be ra-
tional integral functions of the di-
rection cosines, and therefore poly-
nomials in x/r, y/r, and z/r; other-
wise L would have branch points at
some values of the direction cosines.
This fact suggests seeking solutions
LI which are homogeneous polynomials
of degree k in those direction cosines.
Any such polynomial has the form
Lf = Hp/re, where 11,e is a homogeneous
polynomial of degree k in x, y, and z.
After this form is substituted into
Eq. (5.6), it reads

(a2R.e a2Rp a2R.e

ax2 ay2 az2

2. ( aH aite aRe)
ay

+ z
azf+2 xT Tr x (5.7)

[-12(12.-1)+ 0.

Euler's theorem for homogeneous func-
tions, applied to the second bracket
in Eq. (5.7), yields

aHk aHk aHk
X-- y--- + Z kifi. (5.8)
aX ay aZ

Then, multiplying by rP+2 and trans-
posing the term in HR, you can re-
write (5.7):

2
r Ca211! a+ a2:1 a2Q --a21?) = [1(k+1) ki Hi

(5.9)

The left side of Eq. (5.9) has
the factor r2 = x2.11r2.1.z2, and there-

fore the right side must either van-
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ish or have the factor r2 also. But if

it has the factor r21 then Lk = r2P/r2

= P/rf-91 and corresponds to a case of

Lf_2 in which 14_2 does not have the

factor r2. You will therefore miss no

solutions by supposing that the right

side of Eq. (5.9) vanishes: it is

permissible to take k = f(f+1) and

a2Hp a214 a214
= o.

ax2 ay2 aZ2
(5.10)

In other words, the Hk will be the

homogeneous polynomials of degree k

which satisfy Laplace's equation,

often called the "spherical harmonics",

and the corresponding radial depend-

ence of the wave functions will be

given by appropriate solutions to Eq.

(5.5), with k = f(f+1).
Suppose you have found several

Hf for some value of 1. Then any

linear combination of them is also an

Hk, because Eq. (5.10) is a linear

equation. And since any such combina-

tion has the same value of k, and

therefore of k in Eq. (5.5) for RI the

radial dependence of the wave func-

tions for all these Hp are the same

for a given value of k. Furthermore

the permitted values of E - the energy

levels - are the same for a given

value of k, since E appears only in

Eq. (5.5), not in Eq. (5.6).

Notice now several implications

of these facts. In the first place,

you have found "all" the Hp when (1)

you have found a set which is linearly

independent, and (2) you cannot find

another Hp that is linearly independ-

ent of those already found. In the

second place, the wave functions for

a given value of k are degenerate9:

several, with different Hk, have the

same energy levels. If M linearly in-

dependent Hk can be found for a given

1, then the wave functions for the

value k have M-fold degeneracy.
Now when you have found the per-

mitted solutions of Eq. (5.5) for a

9Fir a discussion of degeneracy, see Wave-

Mechanical Properties of Stationary States.

given value of k, you can number the

corresponding energy levels by a num-

ber n, in order of decreasing negative

E: EnIk. Since each energy level is

M-fold degenerate, you can index the

wave functions by using a third num-

ber m: Onlklm.
Suitable sets of Hp for small

values of f are easily found by trial.

You can ignore the methods for sys-

tematically exhibiting such sets,

since higher values of i will seldom

concern you. When k = 0, the poly-

nomial which satisfies Eq. (5.10) is

a constant - any constant. When f = 1,

the coordinates, x, y, and z satisfy

Eq. (5.10), and hence any linear func-

tion of x, y, and z also satisfies it.

It is convenient to pick x, y, and z

themselves as the complete set. When

k = 2, a suitable set is xy, yz, zx,

x2 y2, 2z2 x2 y2. Notice that

the solution z2 y2 is not linearly
independent of these: it is half the

sum of the last two. For k = 3, the

polynomials xyzlx
(y2 z2),y(z2 x2),

z(x2 y2) ,
x(x2 3y2) y(y2 3,74/ 2Nif

z(z2 3x2), form a suitable set.
Notice that 2k + 1 functions are

shown for each value of i. In fact, as

Discussion 5.2 demonstrates, there

must always be just 2k + 1 linearly

independent Hp that satisfy Laplace's

Eq. (5.10).
It is sometimes useful to place

on a set of solutions for a given

value of k the additional requirement

that its members be orthogonal to one

another. Out of a set of linearly in-

dependent wave functions that are not

all orthogonal, a set of an equal num-

ber that are orthogonal can always be

constructed." For example, the set

just listed for k = 2 is completely
orthogonalized, but the set for k = 3

is not.
One of the advantages of solving

the wave equation for this problem in

spherical polar coordinates, instead

"The idea of orthogonality, and the method for

constructing an orthogonal set, are discussed in

Wave-Mechanical Properties of Stationary States.
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Discussion 5.2

POLYNOMIALS SATISFYING LAPLACE'S EQUATION

The most general homogeneous
polynomial of degree f in three vari-
ables can be written in the form

Di = aoz/ (allx + aloy)

z1-2(a22x2 + a21xy + a20y2) +

+ (affx1 + afol_lxi-ly +

+ apoy1).

Thus such a polynomial has at most
1 + 2 + 3 + + (i + 1) - (I + 1)

+ 2) arbitrary constants aij. When

of in Cartesian coordinates as this

chapter has done, is that the polar

method automatically provides wave
functions that are orthogonal. Another
advantage is that it offers a systema-
tic procedure for exhibiting a com-
plete set of wave functions for all
values of k. The fact that the wave
functions exhibited by the polar meth-

od give special importance to one
direction is an advantage when such a
direction has physical significance
and a disadvantage when it does not.

In many problems of atomic spectro-

scopy, the direction of an applied
magnetic field gives significance to

an axis. In some problems of chemistry

- when an atom is bonded to one other
atom in a molecule, for example - a
natural axis appears. On the other

hand, in the simplest situations in

solids, such an axis is illusory. But

of course the wave functions provided

by either method are essentia'ly
equivalent: any set exhibited by one
method can be constructed by taking
linear combinations of the members of

any set exhibited by the other method.

In summary, wave functions for
an electron in a central field can be

chosen to have the form Rk Hp/r.e,

where HR/rP is a function of direction

alone and Ri is a function of distance

from the center. When Q. = 0, the wave

function is independent of direction.

this is substituted into Laplace's
equation, the double differentiation
yields an equation which asserts that
a certain homogeneous polynomial of

degree (i 2) must vanish identically.
In other words, each of the WI 1)

coefficients in that second polynomial
must separately vanish. This estab-

lishes ii(i 1) relations between the
original i(i + 1)(k + 2) coefficients,
and thus finally leaves only i(i + 1)

(1 + 2) 1) 2i + 1 of the

coefficients independent.

When / = 1, the three choices of Hp
proposed above give the directional
dependences x/r, y/r, and z/r, or, in
other words, the cosine of the angle
between the direction and the axes of

x, y, and z respectively. Figure 5.3

shows what the squares of these di-
rectional dependences look like: the
angular dependence of the relative
probability of finding the e7ectron,
or the "density of the electron cloud"

as a function of angle. Do not make

the mistake of thinking that these
diagrams picture the electron cloud
itself. They do not take account of
the radial depeadence; they show the
angular factor by which that radial
dependence must be multiplied. They
shalt, for instance, that the three

Pz orbital Pv orbital Px orbital

appropriate when them am 3 perpendicular

axes (e.g. NH3)
Fig. 5.3 The angular factor for the prob-
ability cloud of a particle moving in a
central force field, in a choice of the
three wave functions for i = 1 in which the

x, y, and z axes are treated alike.
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choices of Hp for t = I give a maxi-

mum probability along an axis and a

probability of zero perpendicular to

that axis, and that the probability is

rotationally symmetrical around that

axis.

PROBLEMS

5.1 Show that the sum of the three

probability density functions for

1 = 1 is spherically symmetrical.

The fact that the sum of the

2k + 1 probability density func-

tions is spherically symmetrical

for any value of / is "Unsold's

Theorem."

5.2 Since the problem which this chap-

ter has treated is spherically sym-

metrical, implying no preferred

choice of axes, all the procedures

(up to the point where special Hp

are chosen) are expressible in

vector form. Write Eqs. (5.1),

(5.2), (5.4), (5.6), (5.7), (5.8),

(5.9), and (5.10) in vector nota-

tion.

5.3 Many one-particle problems are not

spherically symmetric but are
"axially symmetric": the potential

for the particle is a function of

its distance from the axis and of

its position along the axis. The

problem of an electron attracted

to two fixed nuclei in a diatomic

molecule is one important example.

Letting z be the axis and

r = ifx2 + y2 the distance from the

axis, you can seek wave fmactions

of the form 0 ..., R(z,r) L (x/r,y/r)

by analogy with the methods of

this chapter. Show that in such a

wave function, the parts must sat-

isfy the equations

a2R a2R 1 8R
"I 8r2 8z2 +17 8r

+ E--V(z0r) 77]R = Op
t2

ette a2Ke
(2) +

8x2 8y2

where L = Hp/ri and Hp is a homogene-

ous polynomial of order 12 in x and y.

5.4 Noticing that (x+ iy)ra +(xiy)m
fulfills the requirements of Prob-

lem 5.3, show that there are wave

functions for the axially sym-
metric problem whose dependence on

the angle 0 about the axis is

L r-cos m 0 where m is any inte-

ger up to and including /.

5.5 Give in words a simple reason why

the results of Problems 5.3 and

5.4 must be valid also for the

spherically symmetric problem.



6 ANGULAR MOMENTA
IN A CENTRAL

Turn now to consider the angular mo-

menta of a particle, such as an elec-

tron, in the states whose wave func-

tions 0 = RL were examined in the last

chapter. You will see that you can
pick functions for which the energy,
the total angular momentum, and the

angular momentum about one chosen

axis, are all simultaneously specified.

But when those three quantities have

been specified, the limitations im-

posed by the uncertainty principle
permit you only to calculate an expec-
tation value of the angular momentum

about any other axis. You may be sur-

prised to find that the angular fac-

tors L contain all the information
obtainable about angular momentum:
that property is independent of the

radial factors R.
Since the procedure of the last

chapter introduced no unique axis, ex-

amine first the "total angular momen-
tum." Angular momentum is a vector
quantity, and "toal angular momentum"

means the absolute value of that

vector - its length - a quantity that

is independent of axes. You will see

that each of the angular factors L

derived in the last chapter has a
precisely specified value of total

angular momentum, which depends only

on 1. The total angular momentum is
therefore quantized, like the energy,
for k can be only an integer.

Then you can go on to choose an
axis of special interest and seek a

wave function that exhibits a pre-

cisely specified value of the angular

momentum about that axis. The last

chapter showed that the wave functions

for a particular value of k exhibit

(2k + 1)-fold degeneracy. Thus you can
seek a linear combination of the func-

tions of given I, which provides a
specified value of one component of

angular momentum, and you will find

that this component is also quantized.

This chapter is devoted to showing how

OF A PARTICLE

FIELD

33

to carry out the suggested program.
The wave-mechanical operators"

for the three components of angular
momentum, expressed in Cartesian co-

ordinates, are

(Mx a ffi Yaaz zaa y)'

h (

a

a a

azMY 7i zx x),2

z 2 7ri xay Y ax)

h ( a

M

\.

Since the angular momentum is a

vector, the square of the total angu-

lar momentum is the sum of the squares

of its three components: M2 = M +

+ M. To "square" an operator means to

operate with it twice in succession.

The appendix to this chapter carries

out the formaiities of operating with

M2 on the wave function 0 RL.

The result of this investigation

is that the square of the total angu-

lar momentum of an electron, when its

wave function has the quantum number

kl has the exact value k(k+1)(h/2702,

no matter what sort of well the elec-

tron is in, so long as that well has

spherical symmetry. An electron in a

state with k = i for example, has the

total angular momentum 31 -2- h/21T; an

electron for which 1 = 2 has IrZ h/27r.

You cannot know what the direction of

that angular momentum is, but you can

specify the value of the component

along some one direction by choosing

a particular angular factor L out of

the sets that can be constructed from

the Hf .
In undertaking that task, it is

clear at once that the maximum pos-

sible value about any one axis is

+ 1) h/27r, since the angular mo-

mentum about one axis could not ex-

11These operators are described in Wave-
Mechanical Properties of Stationary States.
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ceed the total angular momentum.
Furthermore even that maximum could
not Le specified exactly. If it were,
the specification would assert, "The
angular momentum is all around that
axis, and therefo^e the angular mo-
mentum about all directions perpen-
dicular to that a.;:is is precisely
zero." But the uncertainty principle
asserts that it must be impossible tc
specify all the conponents of angular
momentum at once.

You will find that the largest
absolute value of angular momentum
that can be specified about any one
axis is h/27T. Moreover it turns out

that the only precisely determined
values that the angular momentum can
take about one axis run from I h/27T

to + I h/27T, in integral multiples of
h/27T. In other words, the values of
angular momentum along any axis are
quantized, whenever there is a way to

fix them accurately.
To see how this quantization

comes about, pick the favored axis as
the z axis in a system of Cartesian
coordinates. The quantum-mechanical
operator for the angular momentum
about taat axis is Mz = h/2ri (x 8/3y

y a/ax). To find a wave function in

which tnat angular momentum has a
precise value, requires that the re-
sult of applying the operator to the
wave function shall be equivalent to
multiplying the wave function by a
constant. The wave function is then
said to be an "eigen function of the
operator," and the constant to be an
"eigen value of the operator." The
requirement can be written

Mz0 2ri aY

) mot (6.1)h

where m is a constant.
Substituting the wave function

0 = RL in Eq. (6.1) yields

h GLE
2ri k By

h ( aLR x--
2ri ay

Since BR/ay = y/r dR/dr, etc., the
first term on the left vanishes, and
the equation becomes

h ( 81,

i

aL
x y--) = mL.

2r By Bx
(6.3)

Again, therefore, the results of the
inquiry will not depend on the radial
form of the wave function.

The substitution of L = Hf/rf

yields

h ( aL aL)
. x y--

2ri ay Bx

rk

h x[

By

= or-

or

y 8Hk ak
rf 8x

h ailf
xB-- y---) =

2ri y ax

14+2 (xy-yxd

(6.4)

(6.5)

In other words you now require not
only that the fik be solutions to Lap-
lace's equation but that they be solu-
tions to Eq. (6.5).

Content yourself with examining
how this works for the first few val-
ues of I. Of course, when I - 0 and
Hf is a constant, m = 0 is the only
solution: such functions have no angu-
lar momentum about any axis. This may
sound at first as if it contradicted
the earlier discussion of the uncer-
tainty principle. But in this case
angular momentum simply does not come
into question, just as it does not in
the one dimensional problems discussed
earlier, for the total angular momen-
tum is zero.

When I = 1, any linear combina-
tion of x, y, and z gives an admis-
sible function. Substituting H = ax
+ by + cz in Eq. (6.5) yields

(bx ay) = m (ax + by + cz).(6.6)
2ri

(6.2) In order to satisfy Eq. (6.6) identi-
cally, the coefficients of x, y, z
must separately vanish:
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-h
b = ma

' 2vi
a = rub, 0 = mc. (6.7)

2vi

The first two members of (6.7) yield

m2 = (h/202, or m = ± h/21T. If

m = + h/2v, then b = ia; if m = -h/27r,

then b = -ia. In both cases c = 0. If

m = 0, then a = b = 0 and c is arbi-

trary. Notice that in all three cases

one arbitrary constant remains, which

can be used to normalize the wave

functions. The three functions quant-

ized along the z axis are then

AR
(+ ), AR( r-), AR

z
, (6.8)

r rr r
2.E. .! I .5'

where A is the arbitrary constant. In

terms of spherical coordinates with

their poles on the z axis, x = r sin 0

cos 0, y = r sin 0 sin 0, z = r cos 0,

Sesussion 6.1

Px+) PY orbitals
Px-i py

appropriate when thena is one

axis (e.g. NO

Fig. 6.1 The angular factor for the prob-

ability cloud of a particle moving in a

central force field, in a choice of the

three wave functions for 1 = 1 in which the

angular momentum about the z axis is given

precisely specified values.

and (6.8) transforms to

AR e10 sin 0, AR e-i0 sin 0,

AR cos O.

MAGNETIC QUANTUM NUMBERS WREN

To extend to the wave functions

- WAth f 2 the reasoning exemplified

in the text for the functions with

1, write the most general H2 in

.the form

= a0z2 + z(alx + bly) + a2x2

+ 2b2xy + c2y2. (D6.1)

Snbstituting this in Laplace's equa-

tion gives the requirement

ao + a2 + c2 = O. (D6.2)

Substituting it also in Eq. (6.5)

4ives the requirements

a =
27ri

,

mal

2
i

(c
2
- a

2
)

2v

ma2,

me2,

= 2mb2. (D6.3)

Itom (D6.2) and (06.3) the conditions

,cin.112 for quantiation along the M

a.tts becOme:

2

0: C2 'It az - 2 $

b1
b 0
2

+h
b + ia1,

2v

ao a2 b2 c2 - O.

-h bl = -ial,

ao a2 b2 = c2 = O.

m - +2 a2
2v

ib
2 JP

+ib2, bl .

m = -2 --:
2v

+ib2,

= -1132, ao = al = 131 = O.

(6.9)

Thus by using these coefficients in

the general form (D6.1), five wave

;unctions are constructed, for each of

-which the component of angular MOTaelr

tUm along the z axis bas,*-07460Wely

Specified value.
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To show the appearance of these
angular functions Fig. 6.1 is given
for comparison with Fig. 5.3. Remember
that probability distributions are
measured by the product of a wave func-
tion and its complex conjugate. Hence
the angular factors for the first two
distributions are the same: sin20.
Since the two functions refer to angu-
lar momenta with opposite signs, the
sign in the exponential factor signi-
fies which direction the electron
takes in moving around the z axis.
Notice that the earlier choice of
functions with k = 1 - namely, R x/r,
R y/r, R z/r - was a choice in which
the angular momentum is zero about the
x, y, and z axes, respectively. Dis-

cussion 6.1 provides the outlines of a
similar discussion for states with
k = 2.

Since the angular momentum about
the axis is always an integral multi-
ple of h/27, that multiplier is a
natural quantum number with which to
index the functions for a given value
of k. The number m takes 2k + 1 inte-
gral values: the positive and negative
integers from k to +k including zero.
The quantum number k is called the
"azimuthal quantum number" of the
state in question; m is called the
"magnetic quantum number." And m
acquires significance only when the
physical situation gives significance
to a unique axis.

PROBLEMS

6.1 When the electron in a hydrogen
atom is in a state of maximum m
about the z axis, for a given k,
what is the value of the component
of its orbital angular momentum in
the plane perpendicular to z?

6.2 Show that the first two wave func-
tions of (6.9) are orthogonal over
the accessible values of 0 and O.

6.3 Find the values of the constant A
which normalize the wave functions
of (6.9).

6.4 (a) Show that for the "axially
symmetric" problem (Problem 5.3)
Eq. (6.3) still applies.

(b) Use wave functions of the type
of Problem 5.4 to show that for
any value of k there is a wave
function in which the angular mo-
mentum Mz has the precise value
±m(h/270 where m is any integer
up to and including k.

6.5 By transforming the coordinate
system for the axially symmetric
problem to cylindrical coordinates
r, 0, z (where x = r cos 0,
y = r sin 0, z = z), show that
the operator Mz = h/27i [x(8/8y)

Y(a/a20] transforms into the
operator Mz = (h/2711)(3/80).

Appendix TOTAL ANGULAR MCMENTUM

The wave-mechanical operators for
the components of angular momentum
about the x, y, and z axes are

m
27i Vaz
h _ z1L1

ay/'

m = h (z1L
Y 27i ax az/'

h ( 8 8
Mz 2C-

271 ay ax

Since M2 = MI + + ML the squares
of the operators for the three com-
ponents must be applied to the wave
functions, and the results must be
added together, in order to examine
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the square of the total angular momen-
tum. A typical operation is

1120 = 4)2 ixiL _ _ILL =
ay /ax ay /axr

=(11-)2[2xy-
2g axay

a2 x2a2o 2a20

ay2 Y ax2

X-- -I- y--].
azp alp

ax ay

The sum of the three terms of this
sort yields

(ty B120 (-2
ax2 Y
22± . ..2L11 . _2a2O

\"' ay2 aZ2

+ 2yz,5 + 2zx-T; az-arx + 2xyA)
a20 a2th

2
(X -I- y + z21)

ax ay az

r2
(L2 LP 2L_P 22))
ax2 ay2 az2

(A6.1)

To make further work easier, no-
tice that the square of the operator
x a/ax + y a/ay + z a/az is

(
z--)2 x-- + y-- + z--

ax

a a a a a
=

ay az ax ay az

a2 02 a2
X 2 + 7,7 + z2

4.
aZ4

a2 82 a2

4- 4- 4- 2Xy7277c.2yZ5-7

(A6.2)

This permits rewriting the operator
for M2 in (A6.1) in the form

\h
M2 = (

a a
x-- + y-- + 4-02
ax ay

+ + Z-L)
axay az

r2(:):2 :);)

(A6.3)

=(x4-i + yei + + 1)

+ y-- + z1L)
a

ax ay az

a2 a2 a2
r2(--- ---

ax2 ay2 az2)°

Now operate on the wave function RL
with this operator. Since RL is a so-
lution of Schroedinger's equation
(Eq. (5.1)), the second term of the
operation produces r2(E V)RL. Oper-
ating with the second factor of the
first term yields

aL aL\
(x-a- + + = R(xa+ yay zaziax ay az

+ L(x5Tc + +
(A6.4)

aR aR aR

The first term on the right of (A6.4)
vanishes, by Euler's theorem, because
L is homogeneous of order zero. In
consequence of the relations aR/ax

= (dR/dr)(ar/ax) = (x/r)(dR/dr), etc.,
the second term on the right of (A6.4)
equals 2r (dR/dr). Thus Eq. (A6.3) can
be written

(21)2M2RL = r2(E - V) RL

+

(a a dR
x-- + y-- + +
ax ay az dr

(A6.5)

Perform now the remaining opera-
tion on the right of (A6.5):

(x22

a a dR
+ y-- + z-- + 1) Lr

ax ay az dr

= (ax-- + y-- + z-- r--
ax ay az dr

t, aL) dR

ar
+ (x-- + y-- + z-- L--

ar ar ) dR
ax ay az dr

+ ix-2142+ + z-a-s--11-ALr
k ax dr Yay dr az dr/

dR
+ Lr

dr
. (A6.6)

Again the first term on the right of
(A6.6) vanishes, by Euler's theorem.
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The second term equals Lr (dR/dr), and
the third term equals Lr2 (d2R/dr2).
Equation (A6.5) thus becomes

(
RL22

)2
M

2
= r2(E V)RL + 2Lr--

\ h

dR
dr

d2R
+ Lr2

dr2.
(A6.7)

But since R satisfies Eq. (5.5), the
right side of Eq. (A6.7) equals kRL,

and that equation can be written

h\2
M2RL = (--) kRL.

2ff
(A6.8)

Finally, since k must be equal to
k(k + 1) as the last chapter showed,
the square of the total angular momen-
tum can be given the exact value
l(k + 1)(h/202.
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When there is only one electron in an

atom, it finds itself in a spherically

symmetrical well, formed by the at-

traction of the oppositely charged

nucleus. For such an electron, Chapter

5 showed how the radial dependence of

the wave function could be separated

from its angular dependence. Using

the form 0 = RL, you can find angular

factors L which are independent of the

radial dependence R of the wave func-

tion. In other words the angular fac-

tors do not depend on the precise sort

of well the electron is in, so long

as it is spherically symmetrical - so

long as the instantaneous potential

energy V is a function of r only.

But the radial factors depend

on the angular factors, because they

depend on the value of the total angu-

lar momentum. The differential equa-

tion obeyed by the radial factors

(Eq. (5.5)) is

d2R 2 dR
+ +[E V(0:111 = 0,

dr2 r dr r 2

(7.1)

expressed in atomic units. The quan-

tum number k can take all positive

integral values, including zero, and

the total angular momentum has the

value 4/(k+1) h/27T, as the last chap-

ter showed.
It is helpful to make the trans-

formation R = p/r in Eq. (7.1), so

that the dependent variable in the

equation becomes rR. This eliminates

the second term in (7.1) without

charging anything else, so that it

reads

d2 (rR) + 1)
+ E - r2 V(rd(rR) = 0.

dr
(7.2)

This looks like a one-dimensional

wave equation for an electron with
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the potential energy function

V(0+ k(.e+1)/r2 instead of just V(r).

Since the true potential energy V(r)

is negative, the angular momentum

acts to reduce the depth of the potenr

tial well. The total attractive force

from the nucleus can be pictured as

partly counterbalanced by the centri-

fugal force on the electron, increas-

ingly as the angular momentum in-

creases.
The task at hand is to find the

appropriate solutions to Eq. (7.2)

when the pocential energy is that of

an electron in the presence of a nu-

cleus of charge Ze: V(r) = Ze2/r. Of

course the only electrically neutral

atom for which V takes this form is

the hydrogen atom, where Z = 1. But

the helium ion - the helium atom

which has lost one electron - realizes

the case Z = 2, and the analysis is

just as easily carried out for any

value of Z. The resulting model is

called "the hydrogenlike" atom.

Since Eq. (7.2) is expressed in

atomic unt (Discussion 4.1), the

transfemation r (h2/4772
-2me )r must

be applied to V(r), yielding (-2Z/r).

(27r2me4 /h2) so that V(r) = 2Z/r in

atomic units. Then Eq. (7.2) reads

111E111 r k(k + 1) 2Z
+ E + --] (rR) = 0.

dr2 r 2

(7.3)

The appendix to this chapter carries

out the investigation necessary to de-

velop the appropriate solutions to

this equation. The analysis shows that

the energy of the electron in a bound

state is quantized: it can take on

only the values E = Z2/n2, where n is

a whole number equal to or greater

than i + 1. The lowest admissible en-

ergy, corresponding with the "ground

state" of the atom, is therefore

E = -Z2, when = 0 and n = 1.
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If the electron has any of the
other possible energies, the atom is
said to be in an "excited state." The
electron will tend to drop back to a
lower level, radiating an energy LE
equal to the difference between the
two levels. The frequency v, and thus
the wavelength, of the radiation will
be given by AE = hv. By observing the
resulting spectra, the possible energy
levels are determined experimentally.
Not all interlevel transitions can ac-
tually occur; the possible transitions
are limited by "selection rules" which
are again deducible by quantum mechan-
ics but which this chapter will not
discuss.

Before the quantum mechanical ex-
planation of the spectral lines was
available, spectroscopists had classi-
fied them into series, and had given
those series the names "sharp," "prin-
cipal," "diffuse," and "fundamental."
The initial letters of these words
have been retained to describe the
states and their associated energy
levels in which = 0 (s), = 1 (p),
= 2 (d), and k = 3 (f). For larger

values of k, the letters g, h, etc.,
are used in succession. The upper
level of the two between which a radi-

n = 4

3

2

1

P = 0 2 3

1 3 5 7

1 3 5

1 3

1

Fig. 7.1 The number of states of given en-
ergy (prinnipal quantum number n) with vari-
ous values of total angular momentum (azimu-
thal quantum number i). Each state can
accommodate two electrons.

ative transition occurs to give a line
of the "sharp" series for example, is
an "s level," belonging to an "s
state," with k = 0.

Thus there is a series of s states
in which n = 1, 2, 3, etc., and
E = Z2, (1/4)Z2, (1/9)Z2, etc.; a
series of p states in which n = 2, 3,
etc.; a series of d states in which
n starts with 3; and so on. The
quantum number n is called the "prin-
cipal" quantum number, and k is called
the "azimuthal" quantum number. A
state is described as a "ls state," a
"3p state," etc., by naming its princi-
pal quantum number and then the appro-
nriate spectroscopic letter for the
value of

Notice further that for a given
value of the principal quantum number
n, and thus of the energy, there are
one s state (with k = 0), three p
states (with k = 1), five d states
(with k = 2), and so on, up to 2n 1

states with k = n-1. In short there
are n 2 states with an energy corres-
ponding to the principal quantum num-
ber n; the states of the hydrogenlike
atom have n2-fold degeneracy. It is
useful to keep in mind a table (Fig.
7.1) of the number of states corres-
ponding to the successive values of
n with different values of k. As n
increases and the negative energy de-
creases, there are more and more
states with the same energy (numbered
by n) and with different values of
angular momentum (numbered by k and m).

The discussion in Chapter 5 has al-
ready shown that there is a (2k + 1)-
fold degeneracy of states with the
same value of k. That degeneracy
arises from the fact that the poten-
tial well has spherical symmetry, and
does not depend on other aspects of
the shape of the well. The additional
degeneracy exhibited by the argument
of this chapter does depend on the
shape of the well - on the fact that
V(r) has the form (Ze2/1). Atoms
that are hydrogenlike, such as hydro-
gen itself and the helium ion, actu-
ally exhibit this additional degener-
acy. But other atoms, with more than
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5s
4s

3s

s-SERIES

5p 5d

\ 4p

N 313., 37
,,, d-SERIES

..25

ls

2p

p-SERIES

5f

4f

f-SERIES

Fig. 7.2 Energy levels in the hydrogenlike

atom, and radiative transitions between

those levels which produce the main ob-

served series of lines in the emission spec-

tra of the atoms.

one electron, do not, for reasons that

the next chapter will discuss. Figure

7.2 shows the lowest energy levels for

hydrogen, and the allowed transitions

and spectroscopic states.
Examine now the form of the radial

part of the wave functions for these

states. As the appendix shows, that

form is given by Eq. (A7.6),

R = r (a0 + alr + + ai_10-1)

(A7.6)

where oe E. The coefficients obey

the recursion relation

2 Z a(.12 + j)
aj

ai _1 (A7 . 5)7 2.12. + j + 1

and the polynomial is terminated by

taking Z = ce(i + j). Notice that in all

the preceding members of the xecursion

relation, Z will be greater than the

other term in the numerator, and hence

the signs of the coefficients in the

polynomial in (A7.6) will be alter-

nately plus and minus. Descartes' rule

of signs asserts that such a polynom-

Is=

2s =

3s

Fig. 7.3 Radial dependence of the first

three s functions (k = 0) in the hydrogen-

like atom.

ial with j terms will have j 1 real

positive roots, or fewer by an even

rnmber, and that if they are fewer,

the other roots will be complex. It

turns out that the roots of these

polynomials are all real, and hence

the radial part of the wave function

oscillates with increasing r, passing

through zero j 1 times - in other

words n 1 times, since n = + j.

The radial dependence of the wave

functions for the lowest three s-

states is shown in Fig. 7.3. They have

an increasing number of zeros as n in-

creases, in agreement with the last

paragraph". Despite the increasing

number of oscillations, however, the

mean kinetic energy in all the wave

functions not only the s functions -

decreases as n increases. The in-

creased distance over which the wave

function extends more than compensates

for its increased number of zeros. The

total energy still increases under

these circumstances because the mean

potential energy increases even more

rapidly than the kinetic energy de-

creases. The electron spends more of

its time farther from the nucleus.

There are two interesting ways of

looking at the probability distribu-

12This fact is also in agreement with the dis-

cussion of orthogonality in Wave-Mechanical

Properties of Stationary States.
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tions given by these wave functions.
One way is to look directly at their
squares, which will measure the rela-
tive probabilities of finding the elec-
tron in little volume elements, all
of the same size, at various distances
from the nucleus. The other way is to
look at the square of the wave func-
tion multiplied by 47r2. That will
measure the relative probability of
finding the electron somewhere in a
thin spherical shell of radius r, or,
in other words, the probability of
finding it at the distance r from the
nucleus.

It is clear in Fig. 7.3 that the
s functions give a maximum at r = 0
for the first kind of probability: the
electron is more likely to be at the
nucleus than anywhere else. Figure
7.4 shows curves of the second kind of
probability. As n increases, the most
probable distance of the electron from

Fig. 7.4 Probability of finding the elec-
tron in a thin spherical shell at the dis-
tance r from the nucleus, in the first
three s functions of the hydrogenlike atom.

2p =

3p

Fig. 7.5 Rad.l.al dependence of the first
two p functions (k = 1, total angular mo-
mentum Irih/270 of the hydrogenlike atom.

the nucleus moves outward. The two fig-
ures together suggest, thinking rough-
ly, of the electron distribution in a
ls state as a spherical ball, in a 2s
state as a spherical ball,surrounded
by an outer shell, and in a 3s state
as a ball with two outer shells.

When k is not zero, the wave func-
tions are not spherically symmetrical,
and it is more difficult to visualize
them because both their radial and
their angular dependence must be con-
sidered. In the case of the p func-
tions, the square of that angular
dependence in other words, the angu-
lar dependence of the corresponding
probability functions - has already
been shown in Fig. 5.3 and Fig. 6.1.
The radial dependence of the 2p and 3p
functions is plotted in Fig. 7.5. The
squares of these functions show that,
unlike the s functions, the p func-
tions do not afford a maximum probabil-
ity of finding the electron at the
nucleus. In fact for all states in
which k is not zero, the probability of
finding the electron k.t the nucleus
vanishes, because the wave functions
have the factor 0 (Eq. (A7.6)).

Figure 7.6 shows the radial de-
pendence of the probability functions
in the same two p states, for spheri-
cal shells of radius r, to be com-
pared with the s-state functions in
Fig. 7.4. Again the most probable dis-
tance of the electron from the nucleus
increases as n increases. That peak
probability is at a slightly smaller
value of r in a p state than in the

Fig. 7.6 Probability of finding the elec-
tron at the distance r from the nucleus,
in the first two p functions of the hydro-
genlike atom.
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s state for the same value of n. But

this difference between s states and

p states cannot be given a ready in-

terpretation because of the complica-
tion introduced in p states by their

angular dependence.

Appendix RADIAL DEPENDENCE OF HYDROGENLIKE STATES

The wave functions for an elec-

tron attracted to a single nucleus

can be expressed in the form 0 = R14,

where R is a function of r, the dis-

tance of the electron from the nucleus,

and L is a function of the direction

of the vector r, as Chapter 5 de-

scribed. The radial dependence R must

then obey the ordinary differential

Eq. (A7.1):

a2(ER1 )202 + 1) 21
r 2dr2

(rR) = 0,

(A7.1)

and acceptable solutions to this equa-

tion must be quadratically integrable

over all space."
Notice in the first place that at

very large r Eq. (A7.1) approaches

dr2
+ E(rR) = 0. (A7.2)

Since your interest is in bound states,

where E is negative, you can expect

from Eq. (A7.2) that the solutions

will look roughly like e-ar, where

a2 = E, at large r. This suggests

examining solutions having this fac-

tor, and it turns out to be convenient

to take out a factor rf2+1 at the same

time. Substituting rR = e-arne+IP in

Eq. (A7.1) yields a differential equa-

tion for P:

d2P
dr2

+ 2
(k + 1 )dP

a
dr

2 r
+ Lz a(12 + 1)] P = 0. (A7.3)

13This requirement is discussed in Wave-Mechani-

cal Properties of Stationary States.

It is now appropriate to seek a

solution for P in the form of a power

series" in r:

P = ao + alr + a2r2 + ajri +

dP = al + 2a2r + 3a3r2 +
dr

d2P

+ + 1)ajlri +

=
dr2

2a2 + 2.3a2r 3.4a4r2 +

+ (j + 1)(j + 2)ai2ri

(A7.4)

Substituting (A7.4) into (A7.3), and

requiring that the equation should be

identically satisfied in each of the

powers of r, provide relations that

must be satisfied btween the coeffi-

cients in the power series:

Z a(k + 1)
al = ao,

+ 1

gL=2111.2aia2 = a1 ;
2)2 + 3

2 Z aa +
j 2k + j + 1 a3-1a j

(A7.5)

These are "recursion relations" which

permit a determination of the coeffi-

cients aj in succession, starting with

some assumed value of ao which remains

as the one arbitrary constant multi-

plying the solution. In general the

series of powers of r in P will be an

infinite series.
Looking at what happens to aj as

j gets very large reveals the appear-

14An analogous procedure for obtaining the wave

functions of a one-dimensional harmonic oscilla-

tor is discussed in Wave-Mechanical Properties

of Stationary States.
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ance of the series "far to the right"

- the relation between the coeffi-
cients of large powers of r in the
series. The large value of j then
dominates everything else in the re-
cursion relations (A7.5) which be-

comes

2u
aj . aj_i .

This is the same as the relation be-
tween successive coefficients in the

series

e2ar 1 + 2ar +
(2ar) 2

2!
+

(2019J-1 (28)i
+ +

Hence the solution for P will diverge
as e2cYr for large r, yielding

R = r'ee+ar an inadmissible wave func-

tion for a bound state.
The only salvation is to choose

the quantities in (A7.5) in such a
way as to make the series terminate,

so that P is a polynomial in r rather
than an infinite series. Such a termi-
nation can be accomplished by taking
Z = aa + j). Then aj and all succeed-
ing coefficients vanish:

P = a0 + a1r + + ai_10-1, and

thus

R = e- ar rk(a0+a1r + +

(A7.6)

Since j, k, and Z are whole numbers,

the condition is

Z2

as2 = E n 2) (A7.7)

where n is the whole number n k + j.

The polynomials defined in this fash-
ion are called the "Laguerre poly-
nomials."

Equation (A7.7) then determines
the permitted energy levels for an
electron in this sort of well. Notice,
from Eq. (A7.6), that n cannot be less
than k + 1, for there must be at least
one term in the polynomial. Thus the

permitted values of energy are
_E 22/(. 2 1)2, 22/(.2 2)2, etc.

The lowest energy level of all - the

level E0 with the largest negative
energy - will be that in which k = 0,

n = 1, and thus E0 = Z2 in atomic
units. If there is only one electron
in the atom, its wave function will
normally be that corresponding to this
lowest level: the "ground state"
00 =RL =AC"o o

PROBLEMS

7.1 By using the quantum condition
(A7.7) and the recursion relation
(A7.5), derive the radial parts
(A7.6) of the wave functions:

ls : r eZ

2s
e-zr/2

2

3s R e-zr/3 (1 2.Z.r 2Z2 2)
3 27 r

Zr
2p R = e/2

e-zr/3
r Z-r)

6

3d R
e-Zr/3 r2

7.2 Derive the normalizing coefficient
for the complete 1.s wave function,
in which all space is accessible
to the particle.

7.3 Calculate the mean potential en-
ergy of an electron in the state

described by a ls wave function,
and compare it with the total en-
ergy.

7.4 Calculate the mean distance oi the
electron from the proton in a hy-
drogen atom in the ls state.

7.5 Show that the most probable dis-
tance from the nucleus at which
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you will find an electron, when it

is in the ls wave function of a

hydrogenlike atom, is l/Z atomic
units. It is this value, not that

of Problem 7.4, that is most ap-
propriately taken as the "radius"

of the electronic "orbit."

7.6 (a) Show that choosing the atomic

unit of energy twice as large as

the unit used here (Discussion
4.1) has the aesthetic advantage

of corresponding with a choice of

units in which the mass of the
electron is one, the charge on the

electron is one, and the unit of

action h/27 is one.

(b) Show that the choice (a) has

the aesthetic disadvantage of in-

troducing a factor of two at one

point in Schroedinger's.equation
for the electron in a central

Coulomb potential.
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An early and major triumph of the
wave-mechanical theory of electronic
behavior in atoms was its explanation
of the periodic table of the elements.
In this application of the theory the
results obtained in the last three
chapters, f.-atifyingly exact for
atoms and ions with only one electron,
are extended qualitatively to atoms
with more than one electron. For that
extension an atom is regarded as a
system of identifiable electrons, each
occupying a state similar to one or
another of the one-electron states de-
scribed in the last chapter. Limita-
tions are placed upon their occupancy
of these states by using the exclu-
sion principle" in its simplest form:
at most two electrons, one with spin
"up" and the other with spin "down,"
can occupy any one of the states.

The most important aspects of
the periodic table can be explained
by applying these principles to de-
scribe the "ground states" of the dif-
ferent species of atoms the states
of lowest energy. The application can
be systematically carried out by
imagining, for an atomic species whose
atomic number is Z, that a bare atomic
nucleus of charge Ze acquires its Z
electrons one by one. This procedure
is sometimes called the "building-up
principle" - a necessarily awkward
translation of the German aufbauprinzip.

The last chapter has already de-
scribec: what happens when the first
electron is associated with the nu-
cleus of charge Ze. The electron finds
a choice of possible states similar
to those for the electron in hydrogen.
The only difference is that the wave
functions are pulled in closer to the
nucleus, because its attractive charge

"The exclusion principle for electrons is dis-
cussed in Wave-Mechanica nmperties of Station-
ary States.
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is Ze instead of e. In the unexcited
atom, the electron will occupy the
state of lowest energy, the ls state.

When a second electron is added,
it will try to occupy the same state,
aligning its spin antiparallel with
the spin of the first electron, as the
exclusion principle describes. Now
neither electron will experience sim-
ply the potential (Ze2/r), because
in addition each will repel the other.
Since the ls wave function gives an
especially high probability for find-
ing both electrons in a small region
near the nucleus (Fig. 7.3), their
mutual repulsion will tend to drive
them apart and thus to modify their
wave functions appreciably.

The atom with Z = 2 is helium,
a species with great stability and
chemical inertness. The energy that
must be supplied to remove one of the
two electrons of a helium atom is
1.81 times that required to remove
the one electron from a hydrogen atom.
If the two electrons were not repel-
ling each other, the removal of one
would require four times the energy
required for hydrogen, since the en-
ergy associated with the hydrogenlike
state varies as Z2 as the last chapter
showed. On the other hand, if the
first electron counteracted half the
attraction of the nucleus, the ioniza-
tion energy would be the same as that
of hydrogen. The next two chapters
discuss more quantitatively some ways
of predicting where the true ioniza-
tion energy will fall between these
limits.

When the nuclear charge is
raised to 3e, and a third electron is
added, that electron cannot adopt the
ls state because that state is "fully
occupied." According to the exclusion
principle, no two electrons can occupy
states with the same four quantum num-
bers, and the third electron finds
two electrons already in the ls state
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(and thus with the same values of n,
k, and m), each with one of the two
possible spin quantum numbers,
ms = ±1/2. The only recourse for the
third electron is to adopt the hydro-
genlike state of next higher energy.

The treatment of the hydrogenlike
states in the last chapter may seem to
leave no clue to what that state will
be. The states next higher in energy
are those with n = 2 and they are de-
generate: four, with different values
of _C. and m, have the same energy. In
fact, however, it is not hard to see
that, in an atom with Z = 3, the 2s
state will have lower energy than the
2p states. The two electrons occupying
the ls state form a spherical cloud
of negative charge. In so far as the
third electron stays outside that
cloud, it sees an attractive charge
of only +e rather than +3e. The forms
of the s and p wave functions (Figs.
7.3, 7.4, 7.5, and 7.6) show that s
electrons will penetrate that cloud
more deeply than p electrons, and
thus will experience more attraction
from the nucleus. The third electron
will therefore adopt a 2s state; so
also would a fourth, with opposite
spin.

The element of atomic number 3
is lithium, the lightest of the alkali
metals. Its ionization potential is
less than forty percent of that of
hydrogen. Its readiness to form ionic
salts, in which it exhibits unit
valency, follows from the fact that
its one "outer" electron sees on the
average an apparent nuclear charge
much less than +3e, and moreover is
further from the center of that attrac-
tive charge than the single ls elec-
tron in hydrogen.

It might seem natural to proceed
further along the periodic table by
using the reasoning so far employed,
in the following way. Each state, de-
rived from thinking of an atom as
"hydrogenlike," can accommodate at
most two electrons. When all the
states belonging to a value of the
principal quantum number n have been
filled, the next electron should adopt

a state for which n is one unit larger.
Since there are n2 states of principal
quantum number n, a "rare gas" atom
should appear at atomic numbers
2 X 12 = 2, 2 x 12 + 2 X 22 = 10,
2 x 12 + 2 X 22 + 2 X 32 = 28, etc.

This simple reasoning is satis-
factory for helium and neon, but it
breaks down beyond that, for a reason
that becomes clear on examining fur-
ther the repulsions offered by the
growing cloud of electrons. The dif-
ference in penetration of the states
of different k makes the relative en-
ergies of the states of any one n go
up with k, when the actual occupation
of the inner state by electrons is
taken into account. In consequence,
the approximate stability sequence for
filling the various states can be
diagrammed as in Fig. 8.1. There each
state is represented by a slot, which
can be occupied by two electrons; by
way of example, the occupancy in

7s

6s

6p

513

5s

3s

2s

s

3p

2p

6d

I

5d

4d

I I LL
3d

5f

4f

Fig. 8.1 A rough diagram of the sequence
of energies of the one-electron states in a
many-electrdn atom. Each state can accom-
modate two electrons, and with increasing
atomic number the states of higher energy
are occupied successively.
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Fig. 8.2 Scandium illustrates the fact
that the 3d levels are at higher energy
than the 4s in the ground states of most of

the atoms of Table 2.4, period 4.

scandium (Z = 21) is shown in Fig. 8.2.
A rare gas, argon, is encountered at
Z = 18 rather than Z = 28 because the
3d states penetrate toward the nucleus
so little that their energies are
much higher than those of the 3p
states - even higher than that of the
4s state despite its higher principal
quantum number.

Unfortunately no diagram like
Fig. 8.1 can be drawn which is com-
pletely satisfactory, because the suc-
cessive filling of the slots "weights
them down," so to speak. In the upper
part of the diagram, where levels
differ less in energy, that weighting
sometimes inverts the order of sta-
bility, and thus changes the order
of filling. The elements of the top
row of Period 5 of the periodic table
furnish a good illustration of these
changes. Proceeding from the alkali
metal rubidium (Z = 37) through zir-
conium (Z = 40) two electrons are
placed in the 5s slot, then two in the
4d slots as Fig. 8.1 would suggest.
But now the 4d slots have fallen to
about the level of the 5s slot: in an
atom of the next element, niobium

(Z = 41), there is only one 5s elec-
tron and there are four 4d electrons.
Thenceforward the filling of the 4d
slots continues, retaining only one 5s
electron, until palladium (Z = 46) is
reached. There no 5s electron appears,
and abruptly all the five 4d slots are
filled with ten electrons. Accordingly
in the next element, silver, occupancy
of the 5s slot begins again; it has
ten 4d electrons and one'5s electron,
not nine 4d electrons and two 5s elec-
trons as Fig. 8.1 would suggest.

The fact that silver has one 5s
electron is responsible for the chem-
ical behavior tha places it in Group

I of the periodic table. Characteris-
tically it exhibits the valency one,
in such familiar compounds as silver
chloride (Ag C1). But silver does
form compounds with very avid e3ac-
tron acceptors - compounds such as
silver difluoride (Ag F2) - in which
it exhibits the valency two, much as
if it had two 5s electrons.

The scheme by which one-electron
levels are filled in a many-electron
atom is often shown by a notation in
which the successive levels are listed,
and the number of electrons in each
sort is exhibited as a superscript.
Thus the notation for the ground state
of scandium (Fig. 8.2) would be
1s2 2s2 2p6 3s2 3p6 3d1 4s2. This is

usually abbreviated to 3d14s21 mention-
ing only the occupancy of the upper-
most horizontal belt in Fig. 8.1 that
is occupied at all - in other words
the levels that are open to doubt.

So far the reasoning has left
open the question in what order are
such slots as the 2p slots filled -
those that are shown in groups on the
same level in Fig. 8.1. In the hydro-
genlike atom, these states are degen-
erate: they have the same energy, as
Chapter 7 showed. But they are dis-
tinguishable in the angular distribu-

tion of their probability clouds, as
appeared in Chapter 5. From examining
Fig. 5.3 it is clear that, when one
of these states is occupied by an
electron, a second electron will pre-
fer to occupy a different one of
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Fig. 8.3 The first ionization energies of

the elements, plotted in electron volts

these states because that will enable
the two electrons to stay further
apart under their mutual electrostatic

repulsion. In consequence, the states

of any such group are filled singly,

so far as possible. Double occupancy

of a slot begins only after each slot

in such a group has already received

one electron.
Some of the chemical properties

of the atomic species summarized jn

the periodic table receive a ready ex-
planation in the terms used in this
chapter. Thus the halogens (F, Cl, Br,

and I) have a "negative" valency of

one because they can accept just one

more electron without a serious in-

crease in energy. Wjth the extra elec-

tron, their electronic configurations
become those of the rare gases, but

with a net charge of e unbalanced by

the charge on their nuclei. Hence
their ions have the spherical sym-
metry of the rare gas configurations
(see Problem 5.1).

Similarly an atom of an alkali
is a ready donor of one electron, ac-
quiring a spherical rare-gas config-
uration with net charge +e, In Fig.

8.3 the "first ionization potentials"
of the elements - the energies re-
quired to remove one electron from

against atomic number.

an atom - are plotted in electron
volts, to show that this physical

property exhibits the periodicity of

the periodic table. The rare gases
provide the maxima, the alkali metals

the minima. It is not surprising that

a halogen atom can capture an electron
from an alkali metal atom, and thus

that the resulting ions - the positive

alkali ion and the negative halide

ion - attract each other and form an

"ionic bond.""
Often an atom engages in bond-

ing by sharing electrons with its
partner, to form a "covalent bond."

During the fraction of time that its

partner's electron is near it, that
electron will appear to occupy the
lowest energy state that its electron
configuration affords. And while its

electron is near its partner, that

electron will seek the lowest state

the partner affords. Indeed the coval-

ent bond is characteristically an
"electron-pair" bond. Two electrons
with opposite spins occupy a state

whose wave function looks like a
combination of the lowest available

"The physical character of these and other
bonds mentioned in this chapter are discussed
quantitatively in Bonds Between Atoms.
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MI (b)

Fig. 8.4 Schematic illustration of the way
electrons participate in bonding and give
an element a characteristic valency:
(a) the ionic lithium fluoride, (b) the
covalent fluorine molecule.

states in each atom, connected to-
gether between them. Such bonds will
form only when there are states avail-
able in the participating atoms to
accommodate the additional shared elec-
trons without exorbitant increases in
energy.

Two fluorine atoms, for example,
will bond together to form a fluorine
molecule, with each atom contributing
an electron to the bond. Here each
atom offers one unoccupied 2p state
for its neighbor's electron. Two neon
atoms, on the other hand, could ac-
commodate each other's electrons only
in 3s states, and there is no reason
for an electron to stray from the 2p
state, which it occupies in one neon
atom, into the 3s state - a state of
much higher energy - offered by an-
other neon atom. Hence neon atoms do
not form chemical bonds with one an-
other.

H

Figure 8.4 shows a rough way of
symbolizing what is going on in bond-
ing. At (a) an atom of lithium loses
its one 2s electron to an atom of
fluorine, completing the shell of
eight electrons of principal quantum
number 2 in the fluorine atom, and
forming the ionic bond in lithium
fluoride. At (b) two fluorine atoms
share a pair of electrons, to form a
diatomic molecule covalently bonded,
in which every state with n = 2 in
both atoms is occupied by two elec-
trons.

Figure 8.5 diagrams three alter-
natives that might be written for a
molecule of methane, CH4. In one, a
carbon atom is stripped of its outer
electrons, becoming an ion of charge
4e with the configuration of helium,
and bonding ionically with the four
hydrogen atoms by filling their ls
states and giving them also the helium
configuration. Another diagrams the
reverse hypothesis: the carbon atom
acquires a charge 4e and the config-
uration of neon, bonding ionically to
mked protons. In the third, covalent
bonds are formed between the hydrogen
atoms and the carbon atom, keeping
each neutral, and filling the ls
states of the former, and all the
states with n = 2 in the latter. The
last hypothesis is certainly the best,
because the large net atomic charges
invoked by the two other hypotheses
would surely push and pull the elec-
trons back where they came from.
Notice, however, that the valency of
carbon is four, by any of these three
arguments.

H

Fig. 8.5 Of three ways for schematizing
the bonding in the methane molecule, CH4,
the covalent scheme at the right is most
probable, because the substance shows no

H

evidence of the ionic character implied by
the schemes that give to the central carbon
atom a large net charge.
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PROBLEMS

8.1 Use the stability diagram of Fig.

8.1 to answer the questions.

(a) What levels are being filled

as you traverse the elements from
scandium to zinc in the periodic

table?

(b) What levels are being filled

as you traverse the "rare earths"?

8.2 Would you expect the densities of

the solid elements to reflect in

any way the periodicity of the

periodic table?

8.3 Give the full and the abbreviated

notation for the extent of filling

of the one-electron levels in the

carbon atom in its ground state.

8.4 The argument of the text regarding

the "4d transition elements" and

silver suggests a similar argument

regarding the "3d transition ele-

ments" and copper. Here the ini-

tial difference between the 3d and

4s levels is greater than that be-

tween the 4d and 5s levels, and

the "weighting-down" effect does

not succeed in equalizing them,

with the interesting exception of

chromium (notice that consequently

the 3d levels are precisely half

filled in Cr), until yuu reach

the end of the period. Thus the

ground state of the nickel atom

is 3d84s2 and that of copper is

3d10451. In view of this, discuss
the fact that the most prominent

valency state of copper is two

(though it does exhibit the val-

ency one) whereas the most promi-

nent valency state of silver is

one (though it does exhibit the

valency two).



9 THE TWO-ELECTRON DELTA-WELL

The success of Chapter 7 in calculat-
ing exactly the properties of the hy-
drogenlike atom may spur you to under-
take exact calculations for an atom
with more than one electron. It turns
out that, at present, only approximate
calculations are feasible. Perhaps
you will accept the hopelessness of
exact calculation with better grace
after looking at the difficulties that
even a simplified model presents. In
fact such an examination offers more
than that negative virtue: it exempli-
fies in a simple context many of the
principles that must govern any exact
thinking about electronic behavior.

A very simple-looking model of a
two-electron atom can be constructed
by extending the one-dimensional
delta-well model of Chapter 4 to in-
clude two electrons instead of one.
Its analysis illustrates the sort of
thinking that must be applied to a
wave function of several variables
that are not coordinates along the
three dimensions of real space. Fur-
thermore an approximate calculation
of the energy of the model by the
variational method" agrees remarkably
well with the true energy of the
helium atom. The procedure is a sim-
plified version of that which has been
used to make the most accurate calcu-
lations of the energy of the helium
atom.

Think first of two electrons,
both free to move in only one dimen-
sion x, and a delta well at x = 0
representing the attractive potential
due to the nucleus. The wave functions
for the system are now functions of
two variables - the coordinates xl and
x2 of the two electrons - and Schroe-
dinger's equation (written in atomic

"The variational method of approximating the
energy of the ground state of a wave-mechanical
system is discussed in Wave-Mechanical Proper-
ties of Stationary States.
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units) is the partial differential
equation in two variables:

a20 a20

ax1 2 a 2 [E V(C1, X2)]0 = 0.
X2

(9.1)

The potential V(xl, x2) now re-
sembles Fig. 9.1: whenever xl = 0,
electron No. 1 is at the potential
well of depth V and width k; whenever
x2 = 0, electron No. 2 is at the well.
Looking down on the representation in
Fig. 9.1, and letting V ooand Q. A 0

in such a way that Vk = n, we can
represent the potential by Fig. 9.2.

So long as the problem remains
in this form, it offers no difficulty,
but it offers also no novelty. The two
electrons are quite independent;
neither is affected by its companion.
The potential can be written V(xl, x2)
= V(x1) + V(x2), and the wave function
can be written 0(x1, x2) = 01(x1).02(x2).
Substituting these into Eq. (9.1)
yields

21,
d202 ,41201,

'dx22 7.2d2C12

+ [E V(x1) V(x2)]0102 = O.

(9.2)

Divided by 0 02, Eq. (9.2) becomes

1 d2O2 1 d2O2

02 dx22 2) 4. 01 dx12 V(x1) = E.

(9.3)

Here the variables are separable: you
can take

1 d 2 1p2

02 dX22

1 d2O2
dx12

V(x2) = E2,

V(X1) E1, El E2 ' E.

(9.4)
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Fig. 9.1 Delta wells of potential energy
for two electrons free to move in only one

X 2

a

xl

Fig. 9.2 Plan view of the delta wells of

Fig. 9.1.

Each differential equation in (9.4)

applies to one electron alone with
energy El or E2. The energy of the

whole system is the sum of the two
one-electron energies, and the wave
function is the product of the two
one-electron wave functions. For the
four quadrants of Fig. 9.2, the wave
function for the pair of electrons
can be written

Oa = A e-a(x14.X2), Ob = A e-("x2-x1)

Od = A e(xl."0, Oe A e-a(xl-xd,

(9.5)

where 2a2 + E = 0.
In the real physical system of

interest, however, the two electrons
repel each other according to Coulomb's
law, just as the nucleus attracts both

electrons by that law. Since the model
simulates the Coulomb attraction by a
delta well, it is appropriate to simu-
late the Coulomb repulsion by a delta

dimension of real space.

X2

a /

c

f

d

xl

Fig. 9.3 A delta ridge along the dotted
line simulates the mutual repulsion of the
two electrons.

ridge. The system encounters that
ridge when the two electrons have the

same coordinate: when xl = x2. Then

Fig. 9.2 must be modified as in Fig.

9.3, where the dotted line is a plan
view of the ridge.

You can predict confidently a
few qualitative features of the wave

function for this problem. Everywhere
except at the ridge and the well it

will be a solution of the wave equa-
tion for free electrons - in other
words, with V = 0. At the ridge and
the well the function will be contin-

uous, but it will have a discontinuity
of slope, of amount determined by the

product Vk = n times the value of the
wave function there. Previous work in
Chapter 4 with the one-electron case
shows that, when there is no potential

ridge (Fig. 9.2), the wave function
(9.5) will look like the roof of a
pagoda (Fig. 9.4), with four sections
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Fig. 9.4 The wave function (Eq. (9.5)) for
two electrons moving in one dimension in
the presence of a delta well, when their
mutual repulsion is ignored.

joining at ridge poles and dropping
off from them exponentially.

When the potential ridge is in-
troduced, two of the four sections of
the roof will acquire V-shaped guttors:
the discontinuity of slope at the bot-
tom of the gutter will be simile-4? to
that at the well but of opposite sign.
The reduced values of the wave func-
tion at the gutters show that the
probability of finding the two elec-
trons close together is reduced by
their mutual repulsion. Since some
probability will be pushed away from
the dotted line over its entire course,
the roof will be lower at the center
and will slope away from the center
less steeply. And the energy will be
higher (less negative) because the
repulsion between the electrons will
increase their potential energy at all
separations.

The quantitative task is to con-
struct solutions appropriate to the
six regions separately lettered in
Fig. 9.3, to match them at the bound-
aries of those regions, and to evalu-
ate the discontinuities of slope at
those boundaries. The magnitude of the
task can be reduced at the outset by
observing that the problem exhibits
certain symmetries. Since the elec-
trons are identical, then (if their
spins are opposite) the whole wave
function must be symmetric to inter-
change of xl and x2. In other words

Fig. 9.5 The symmetry relations (9.6) and
(9.7) imply the symmetry relation (9.8).

Moreover, the behavior of the
electrons on one side of the well is
the same as their behavior on the
other side, and thus the whole wave
function must be symmetric or anti-
symmetric to the act of transferring
them from side to side. Since Chapter
4 has shown that the delta well pro-
vides no antisymmetric bound state for
one electron, it is permissible to
guess that the well will not provide
such a state here, for the energy of
all states is increased here by add-
ing a repulsive potential. Choosing
the symmetrical state, already visual-
ized in Fig. 9.4 but with gutters
added, this second symmetry require-
ment can be embodied in the wave func-
tion by writing

,Oci(xl, x2) = 0a( xi, x2),

043(x1 , x2) = Of(xl, x2),

Oe(xl, x2) = xl, x2).

Notice that the relations (9.6)
and (9.7) reduce to Oa and Ob the
separate forms of wave functions that
must be examined: the others can be
constructed from those two. Further-
more, the two relations between Oe and
Ob imply a symmetry in Ob itself:

Ob(xl, x2) 14( x2/ x1). (9.8)

Figure 9.5 shows the relationship be-
tween three typical points in the

(9 6)
(xl, x2) plane to which the symmetry

.

relations for Oe and Ob apply. In con-
sequence, the boundaries at which the
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wave function and its derivatives must

be evaluated are reduced to the two

marked in heavy lines in Fig. 9.5; the

symmetry relations automatically take

care of the rest.
Now consider how to make some

modification of the wave function

(9.5) that might suit it to the new

conditions. Taking Ob = A e(c1x1-a2x2),

where a12 a22 E = 0, provides a
solution to the wave equation for the

free electrons with negative energy.

The signs of al and a2 must be posi-

tive in the region (b) in order to

make the solution approach zero with

increasing negative values of xl and

positive values of x2 in such a way

that the integral of its square over

the quadrant (b) is finite. Suitable

also would be Oc = A e(a2x1-a1X2).

and the sum of the two,

b
= A[ e(a.lx 1 a2X2

0(a2x1-a1x 2 )] (9.9)

is a solution that obeys the symmetry

requirement (9.8).
In the region (a) there is

no symmetry requirement: for that

region Ale 1 1 2 2 / and

A2 e (a2x1+ alx 2) can be added with

different coefficients AI and A2. And

x
1 2

X2 )(o-a
a solution A3e

q
can be

added if al is made less than a2,

since xl is always less than x2 in the

region (a) and this solution will then

be quadratically integrable over the

octant (a). Clearly this term will

help to produce a gutter at xl = x2,

for if A3 is negative the term will

fall off increasingly as xl increases

toward x2. In sum Aary, a suitable

choice is

= A1e (c)11x1+a2x2)

+ A2e (a2x1+ cqx 2 )

A3e -122x2),

(9.10)

and immediately the symmetry require-

ment (9.6) provides

Oc ' Ale
(a22c1

(.12c

+ A2e -(a2x2+aixi)

+ A3e (a1x2- a2x1).

(9.11)

Now Ob and On must be matched at

xl = 0, and On and Oa must be matched

at xi = x2. The second requirement is

automatically satisfied: the method

of constructing On from Oa insures
that they are equal at xi = x2 To

satisfy the first requirement, notice

that 013 = Oa at xi = 0 if

A2 = A, and AI + A3 = A. (9.12)

It remains to impose the requirements

that the first derivatives of the wave

function should exhibit the discontin-

uities invoked by the well and by the

ridge.
Giving the derivative of the wave

function the proper discontinuity at

the well requires (cf. Eq. (D4.2))

°Oa!
ax

1

= 771101
3X1 X O

X1=0

(9.13)

Here nn (read "eta at the nucleus") is

a positive number specifying the well:

the limit of the product Vi of the

depth of the well by its width. The

requirements implied by Eq. (9.13)

can be written

A2 =
inn 1)A, and Al A3= C 1)A.
ka al

(9.14)

Combining these with (9.12) yields

a2
2a2 = nn, Al = A,

a2
A3 = (1 --) A, A2 = A.

(9.15)

Only one quantity, al, remains free

for adjusting the wave function so

that its first derivative will exhibit

a suitable discontinuity at the ridge.
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To set up the requirement on that
discontinuity at xl = x2, it is sim-
plest to rotate the coordinates so
that one of them lies along the ridge.
The formalities of this process are
outlined in Discussion 9.1. It turns
out that the requirement can be met
only by satisfying two more relations
between the A's and the a's, analog-
ous to (9.14), which cannot be accom-
plished with the one remaining free
constant al.

This failure implies that the ex-
act solution to the problem cannot be
expressed in terms of the simple ex-
ponential solutions to the wave equa-

Discussion 9.1

tion with which this analysis started.
Instead of seeking an exact solution
in less familiar mathematical terms,
it is more appropriate to obtain an
approximate solution that retains the
virtues of the work already accom-
plished. Surely the general form of
the wave function (9.9) and (9.10) has
many of the properties that the true
wave function must have. Supposing
that the true function is somewhat
like it, you can use this form to
calculate approximations to certain
properties of the system, in particu-
lar its energy.

Since Discussion 9.1 shows that

THE DISCONTINUITY AT THE RIDGE

The rotation of coordinates
through 45°, from coordinates (xl, x2)
to new coordinates (x, y) with x along
the ridge (Fig. 9.6), can be embodied
in a transformation;

1
xl (x+y), x2 (-x+y). (D9.1)

In the new coordinate system the wave
functions of interest take the forms

{Al expl(a2

+ A2exp kai - a2)
4-2

X2

Fig. 946 Rotating the coordinate system
from (xl, x2) to (x,y) is equivalent to
making the transformation (D9.1).

x exp[-(al + a2)

1,3exp[03, 4. 00 + (a4-a2)

zpc {A2exp [(az
)

+ AI exp [-(al + 0,2)

x expE- 4- az)

+ A3exp[-(ei + a2)
V2

+ (01)

(D9.2)

The requirement on the derivatives at
the ridge is

Malmso.lis

8x 8x
x=o x=0

XEO
fleP (D9.3)

where ne (read "eta electronic") is
positive and specifies the magnitude
of the ridge. This equation, analogous
to Eq. (9.13), places.two more require-
ments on the A's and a's, analogous to
(9.14), of which both cannot be met
simultaneously by the one remaining
free constant al.
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this form cannot be an eigenfunction
of the energy, the relation a12 + a22

+ E = 0 must be discarded. But an ex-
pectation" value for the energy as-
sociated with any such wave function
can be calculated by evaluating

f HOT
H

f t/PIctPdr
(9.16)

Moreover the variation theorem as-
serts that the minimum value of H
with respect to all the free parame-
ters in (9.16) will be an upper limit
to the true energy of the system in
its lowest state.

How many independent parameters
are accessible in the proposed form?
The relations (9.12) insure the con-
tinuity of the function, and thus only
one of the A ratios is free. If you
retain the requirement that the dis-
continuity of derivatives at the wells
shall be precisely right, the rela-
tions (9.15) remove the freedom of the
A's (except of course the freedom to
choose one as the normalizing con-
stant), and pin down a2, leaving al
free. But it is aesthetically unpleas-
ant to single out wells for favored
treatment, in contrast to ridges.
Hence a suitable approximate wave
function might have three independent
parameters - ail a2 and an A ratio -
and the quantity-11, calculated by
(9.16), would be minimized with re-
spect to all three. A convenient way
to retain the single degree of free-
dom in the A's would be to modify
(9.15) to read Al = AA, A3 m (1 X)A,

and take A as the free A parameter.
It will reduce algebraic labor,

however, to adopt a compromise: leave
al and a2 free, but take A = a2/a/ as
in (9.15). Notice that this retains an
important qualitative feature expected
in the wave function. Since al < 0,2

for quadratic integrability, A > 1 and

A3 is negative, as a gutter in section

18Expectation values, and the variation theorem,
are discussed in Wave-Mechanical Properties of
Stationary States.

(a) requires. The form is now reduced
to a two-parameter variation function.

The calculation of 11 is straight-
forward but a little laborious. In
order to make arl/aal and aii-49a2 van-
ish simultaneously, you must find the
joint roots of two cubic expressions
in al and a2. Those roots furnish the
minimum TI that the variation function
will provide.

The way to interpret the results
of the procedure can be seen more
simply by dropping down to a still
less general variation function in
which a2 is fixed by (9.15) and only
al is left free. The most interesting
application of the model will be to
compare it with the helium atom, where
a nucleus of charge +2e is attracting
two electi\,ns, each of charge e.
Hence it is appropriate to take the
depth of the well as equal to twice
the height of the ridge; in other
words, nn = 2a2 (by (9.15)) and
ne = a2. Then, denoting g Zia1/a21

+ (a+1)42 + (V-27-3)g 3

3g + 1 cg2

(9.17)

and the vanishing of .941/.9% requires

P(g) EE-18g2 + (342. 6)g2

+ (2/5- + 2)g

+ 4N + 6 = 0.

(9.18)

Searching for a root of (9.18) that
lies between 0 and 1, since the wave
function is significant only when
al< a2, you find g J. 0.829. Substi-
tuted into (9.17), this root yields

1.25a22.

To compare this result with an
experimental value, begin by assigning

a '11 to the well which gives the
rig gy when there is only one
e1eiu. You know from Chapter 7 that
the energy of the ground state in the
hydrogenlike atom is E = Z2 atomic
units, where Z is the atomic number of
the nucleus. And you know from Chapter
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4 that the energy of one electron in
the linear delta-well model of the
atom is related to nn by E =
Hence for comparison witl. helium
(Z = 2) it is appropriate to take
nn = 4, a2 = 2, providing -41 = 1.25
X 4 = 5 atomic units.

The experimental ionization en-
ergy of helium - the energy required
to remove one electron - is about 1.81
atomic units. After that electron is
removed, the remaining electron is in
the ground state of a hydrogenlike
atom with Z = 2, and its removal will
therefore require 4 atomic units of
energy. Hence the total energy of the
helium atom in its ground state is
5.81 atomic units, to be compared
with the approximation of 5. If you

carry out the calculation with the
two-parameter function, you will im-
prove the approximation to IT = 5.21.
Of course if the elecixons were in-
dependent and not repelling each other,
the energy would be 8.

No doubt the three-parameter vari-
ation function would improve the
agreement still further. But it would
be poor taste to apply a more refined
calculation to so crude a model of
the atom, unless you had a reason for
especial interest in the model rather
than the atom. The suggested sense of
propriety is invoked by a wise saying,
"Never use a steam hammer to crack a
nut" - and by another, "When you have
a fuzzy model, use fuzzy mathematics."

PROBLEMS

9.1 Draw six diagrams showing the lo-
cation of the nucleus and a typi-
cal location of electrons No. 1
and No. 2 corresponding to each of
the six regions of Fig. 9.3.

9.2 (a) On a coordinate diagram like
Fig. 9.2, draw a contour of equal
probability for the wave function
(9.5) for two independent elec-
trons.

(b) Show that the shape of the con-
tours of equal probability for the
trial function (9.9) in region (b)
describes a roof which is necessar-
ily dished downwards from the
ridge poles - i.e., concave up-
wards - when al a 2'

9.3 In a qualitative discussion of the
wave functions for the problem
treated in this chapter, comparing
the properties of the "roof" be-
fore and after pushing in the
"gutter," a recent treatise on

theoretical physics says, "The
'roof angle' at the ridges must
be the same as before, since this
is determined by the potential
valleys." What is wrong with this
statement?

9.4 The experimental value of the en-
ergy of the lithium ion, Lit, is
14.6 atomic units. Compare this
with the value given by the one-
parameter variation functions of
this chapter, and give the physi-
cal reason why the approximation
is better or worse than the cor-
responding approximation for the
helium atom.

9.5 Show that, for the true wave func-
tion for the problem of this chap-
ter, the contributions to 11 from
inside the wells and ridges must
all cancel out, leaving simply
the expectation value of the kine-
tic energy outside the wells and
ridges (cf. Problem 4.5).
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10 MANY-ELECTRON ATOMS

Progressing through the elements in

order of increasing atomic number,
you find that the increasingly numer-

ous electrons are forced, by the prop-

erties summarized in the exclusion
principle, to occupy states with dif-

ferent quantum numbers. Chapter 8 has

shown that many conspicuous properties

of an atom are determined by what are

the one-electron states with the high-

est quantum numbers that are actually

occupied by electrons when the whole

atom is in its ground state. Unfor-

tunately the many-electron problem is

too complicated to treat exactly, as

the hydrogenlike atom was treated in

Chapter 7. It is worth-while, never-
theless, to look further at the gen-

eral problem a little more quantita-

tively than Chapter 8 has done, and a

little less exactly than Chapter 9 has

attempted.
As the atomic number of the atom

increases, three major influences on

the electrons change progressively.

The first change is the increase in

the attractive force of the nucleus be-

cause of its increasing charge. If

this influence operated alone, the

atoms of larger atomic number would be

smaller in size than those of smaller

atomic number (see Problem 7.5) be-

cause the nucleus could pull the elec-

trons closer to it without hindrance.

The second change is that of the

character of the wave functions of

increasing quantum number. Figures 7.4

and 7.6 have shown that in the hydro-

genlike aton. the most probable loca-

tion of the electron moves outward
from a nucleus of any given charge as
the quantum numbers increase. And
finally the repulsive force that the

electrons exert on one another tends
to modify their wave functions so as
to reduce the total electronic prob-

ability at any single place, as the
simple model examined in the last
chapter showed in detail.
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A fairly successful way to think

of the interplay of these influences

is to visualize each electron as mov-

ing in a force field that is still
spherically symmetrical but now com-

posed not only of the field due to the

nucleus but also of the average field

due to all the remaining electrons.

For an electron in such a field, the

developments carried out in Chapters 5

and 6 remain valid - the angular de-

pendences and "space quantizations"
of the one-electron wave functions.

Only the developments of Chapter 7 -

the radial dependences of the wave
functions - must be modified. Now the
electron moves in a field due to a
point charge of 1-Ze at the nucleus
surrounded by a negative "charge
cloud," containing a total charge of

1)e, whose density may vary with
distance from the nucleus.

To obtain a crude picture of what

to expect, suppose for the moment that

the charge cloud forms a ball of uni-

form density around the nucleus - a
ball with a definite radius R such as
Fig. 10.1 shows. Recall that the elec-

trostatic potential due to a thin,

uniformly charged spherical shell is

zero inside the shell, and that out-

side the shell it is the same as the

potential that would arise if the

charge were concentrated at the cen-

ter of the sphere. Thinking of the

ball of charge as made up of concen-

tric spherical shells, you see that

the charge of the ball that is effec-

tive at the position r of the electron

will be proportional to the volume of

the sphere of radius r when the elec-

tron is inside the ball, and to the

volume of the sphere of radius R when

it is outside. Those facts prescribe

the remaining plots in Fig. 10.11

showing that the potential V(r) seen

by the electron will vary from Z/r

in atomic units when the electron is

close to the nucleus to 1/r when it

1
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Fig. 10.1 You can think roughly of an elec-
tron as moving in the field due to the
nucleus and to a spherical cloud of nega-
tive charge formed by the other electrons.

is far from the nucleus. Hence you
can think of the electron as increas-

ingly shielded from the nucleus by
the other electrons, as it departs in-

creasingly from the nucleus. Further-
more, the two extremes of potential -

-Z/r near the nucleus and -1/r far
from the nucleus - will be the same
whatever the variation in charge den-
sity with r, so long as the charge
density falls off toward zero at large
r (as it must in a bound state of the

atom) and is approximately spherically
symmetrical.

Notice now what will happen to
the various electrons in this model of

a many-electron atom. The ls state in
the hydrogenlike atom has a peak in
the radial probability at r = 1/Z
atomic units of distance. The peaks

Z = 5 10 15 20 25 30 35

Fig. 10.2 Ratio of the energy of a ls
electron to that of (1) a "heliumlike"
electron, and (2) a "hydrogen1ike" electron.

in the 2s and 2p hydroFenlike states
are at appreciably greater distance
(Figs. 7.4 and 7.6). Hence the ls
electrons will spend most of their
time closer to the nucleus than the
electmns of higher principal quantum
number, and most of the time each will
see the potential due to the nucleus
modified only by that due to its com-
panion in the ls state of opposite
spin. Their wave functions will look
much like those which the two elec-
trons in the helium atom would have
if the helium nucleus had charge +Ze
instead of +2e.

Recalling that in the hydrogen-
like atom the energy of an electron
in the ls state is -Z2 in atomic units,
you might expect that you could calcu-

late the energy of a ls electron when
two are present in a many-electron
atom, taking their interaction roughly
into account, by multiplying the ls
energy for helium (-1.81 atomic units)

by Z2/22. Figure 10.2 shows the ratio
of the true energy to that calculated
in this way, and also the ratio to
that of the hydrogenlike ls function
for the same Z, for several elements.
With increasing Z the ls electrons
have energies more "hydrogenlike" and
less "heliumlike." You can understand
this by remembering that, while the
charge on the nucleus is progressively
increasing, the charge on the electron
is not. Thus the electronic interac-
tion becomes a less im:lortant fraction
of the potential for the ls electron.
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Look now at the electrons with
the highest quantum numbers - for ex-
ample, at the single s electron of

highest principal quantum number n in

the alkali metals. Even through the

maximum of probability of the cor-
responding hydrogenlike s function is
outside most of the sphere of charge
of the other electrons, the s function

gives a nonvanishing probability of

finding the electron 'at" the nucleus.
Insofar as the electron does penetrate
the sphere, it will be pulled in fur-

ther, since it will experience less

shielding. The wave function will have

some amplitude added in the region
of small r, at the expense of the re-
gion of larger r; in other words, it

will be smeared inward.
The energy of the electron will

conspuently be reduced from the value

1/n which it would have if its wave
function were hydrogenlike and the
other Z 1 electrons shielded it so
completely that it saw only the net
charge +e. The pulling in will tend
to be greater the higher the nuclear
charge, reducing the energy of the
electron more from the hydrogenlike
value at high values of Z. There
arises in this way a competition be-
tween the increased value of Z and
the decreased value of 1/n2 as you go
down the group of alkali metals. The
latter influence wins, but only barely,
as Fig. 10.3 shows. This figure is a

Cu* Ag*

6
Li

, ------ Rb

7 = 10 20 30 40 50
Cs

6

Fig. 10.3 The energies of the outermost
s electron in the alkali metal atoms.

plot of the minima in the ionization
potential of the elements as Z changes;
the argument explains the general
drift downward with increasing Z which
is noteworthy in Fig. 10.3. Notice
also that the 4s electron in copper is

at a lower energy than in the alkali

metals because the 3d electrons are
at a comparable distance from the nu-
cleus much of the time and do not
shield the 4s electron very effec-
tively.

Electrons whose quantum numbers

are intermediate between the lowest

and the highest in the atom have in-

termediate energies; similar argu-
ments can be applied to them, albeit

with increased difficulty. But one
other simple effect is worth notice
- the effect of increasing the azimu-

thal quantum number I while leaving
fixed the principal quantum number n.
The hydrogenlike wave functions have

the factor rk (Eq. (7,8)) and thus

vanish at r = 0, unlike the s func-
tions. Moreover that factor keeps
those functions small for longer dis-
tances from the nucleus as f increases.

5

SODIUM
p d

HYDROGEN

7
6

--4

7 6 ----- 6
6 5 -- 5
5 4 4 --
4

7
6

4

3 3

n = 3
2

3

Fig. 10.4 When the 3s electron in sodium
is excited to a state with a larger value

0 of k, its energy approaches that of the
corresponding level in hydrogen. Principal
quantum numbers n are shown as numerals
against the levels.
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Thus the nuclear charge has less op-
portunity to pull the electron toward
it, and its wave function in a many-
electron atom is less smeared inward,
retaining more nearly a hydrogenlike
form. Hence for a given value of n
the energy of an electron increases
with 1, unlike that of the electron in

the hydrogenlike atom.
The energies of the excited states

of an atom demonstrate this effect in

an especially clear cut way. Figure

10.4 compares some energy levels of
the sodium atom with those of the hy-

drogen atom. It shows the energy
levels found experimentally in a sodi-

um atom when its "outer" electron,
normally in the 3s state whose energy
level appears at the lower left, is
excited to each of the other states
named. As ,C increases, the energy of

2p

I I I I

0.1 0.2 0.3 0.4

r IN ATOMIC UNITS

Fig. 10.5 Probability of finding an "in-
ner" electron at the distance r from the
nucleus, in the wave functions of the

the electron rapidly approaches the
level in hydrogen with the same prin-
cipal quantum number. Clearly, when
the remaining electron cloud is in-
creasingly able to shield the electron
from the nucleus, the electron sees
more nearly the net attractive charge

+e, and the electronic state becomes

nearly the same as the excited state
of hydrogen with the same quantum
numbers.

Attempts to embody the foregoing
considerations in a scheme of quanti-
tative calculation take several forms.
One way to obtain an approximate wave
function for a one-electron state in a
many-electron atolin is to describe the
state as hydrogenlike but with an
"effective Z" - a value Zeff chosen to
give the experimentally observed en-
ergy in the hydrogenlike formula

Z2eff

n 2
(10.1)

Clearly Zeff will always be less than
the Z of the atom in question because
the nucleus will always be shielded
by the electron cloud. This way of
thinking suggests writing

Zeff S, (10.2)

where S is a "shielding constant." It
then becomes tempting to regard S as

a sum of shielding constants ascribed

to the individual shielding electrons
which make up the cloud. After evalu-
ating S from many observations on dif-
ferent states of different atoms, it

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

r IN ATOMIC UNITS

states of principal quantum numbers 1, 2,
and 3 in rubidium.
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Fig. 10.6 Total charge probability at the distance r from the nucleus in rubidium.

is possible to make up tables of in-
dividual contributions to S which
give roughly consistent experimental
results. It is still necessary, how-
ever, to choose such an individual
shielding constant as a function not
only of the quantum numbers of the
shielding electron but also of the
quantum numbers of the shielded elec-
tron.

A much more accurate, but a much
more difficult, way of handling the
problem is by the method of the "self-
consistent field." This method makes
use of the fact that the electrons
whose wave functions are in question,
and the electrons that furnish the

charge cloud, are the same electrons.
If you calculate the wave function
for each electron in some reasonable
form of charge cloud, you can find
the charge cloud which all those wave
functions taken together produce. You
can then repeat the calculation, using
a new charge cloud, and so on until
successive calculations do not change
the form of the charge cloud. From an
astutely chosen starting point, the
process converges rapidly. It is never-
theless very laborious, for the work
must all be done numerically, and rela-
tively few atoms have been analyzed by
it .

Figure 10.5 shows for rubidium
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10 CORE ELECTRONS

CIL
0,1
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Fig. 10.7 Radial distribution of electrons excited states, (b) ground state.

in sodium: (a) ground state and first two

the radial charge density thus deter-
mined - the probability of finding an
electron at the distance r - for the
wave functions of the inner electrons.
Notice that these electrons are in-
deed "inner": the high nuclear charge
of +37e has pulled in these functions
so that the 28 electrons of n = 1, 2,
and 3 all nearly fit into the volume
of a hydrogen atom. By contrast, the
5s electron has a shallow maximum
radial density at nearly six times
that radius. Figure 10.6 shows the
total charge probability at the dis-
tance r.

These results confirm the pic-
tures suggested in this chapter. The
inner electrons are so tightly bound
that they are only very slightly
affected by the electronic behavior
at the periphery of the atom. Bonding
of the atom to others, to form mole-

cules and solids, is almost entirely
controlled by the behavior of the
puter electrons. It is largely the be-
havior of those electrons that the
periodic table reflects. In order to
disturb the inner electrons, the atom
must be bombarded with quite energetic
particles or with photons of short
wavelength.

Examine finally the wave func-
tions for the lowest excited states of
sodium, whose energies have already
been discussed and ploted in Fig.
10.4. In the hydrogenlike atom, the
peaks of radial probability (the
"radii" of "orbits") are not greatly
different in all wave functions of the
same principal quantum number (Figs.
7.4 and 7.6). That this is also true
of wave functions for the "inner"
electrons of a many-electron atom
appeared in Fig. 10.5. But Fig. 10.7a
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shows that this is not true when an

outer electron is excited to a state

with the same principal quantum number

but with different k. The character-

istic difference in penetration of the

wave functions of different k, whose

effect on the energies of those states

appeared in Fig. 10.4, makes itself
felt also on the radii. They increase

with increasing until k reaches such

a value that the orbit scarcely pene-
trates at all; at still hig.'3r values

of the radii, like the energies, are

nearly hydrogenlike.

PROBLEMS

10.1 Early in the history of atomic

spectroscopy, Rydberg observed
that the spectral lines from ex-
cited many-electron atoms could

be correlated in a fashion we
would now say was equivalent to

ascribing the lines to transi-
tions between energy levels (of

excited outer electrons) given by

the "Rydberg Formula"

E
1

in atomic units,
(n 6)2

where n is the principal quantum

number and 6, the so-called
"quantum defect," depends on k,

the azimuthal quantum number, and

is independent of n.

(a) Do you expect 6 to be an in-

creasing or a decreasing function

of i?

(b) From the experimental value

E 0.31 atomic units for the 5s

electron of rubidium, find the
value of 6 for k 0 in that ele-

ment, use it to calculate the

energy of a 4s electron (which ts

not an outer electron) and com-
pare the result with the value

2.3 estimated from x-ray spec-
troscopy.

10.2 The "radius" of an "orbit" in an

atom - in other words the value

of r at which you are most likely

to find the electron - is roughly

approximated by r ==. n2/(ZS)
atomic units, where S is a shield-

ing constant. Find the shielding
constants appropriate to the ls,

2s, and 3s electrons in sodium
whose "orbits" have the "radii"

0.05, 0.32, and 1.55 Angstrom

units.

10.3 Discuss your anower to the ques-
tion: Is a many-electron atom
smaller or larger than the hydro-
gen atom would be if its electron
were excited to the quantum state

occupied by the outermost of the
electrons in the ground state of
the many-electron atom?

10.4 Offer what criticisms you can of
the approximation in which you
regard the electron cloud which
acts upon any selected electron
in an atom as spherically sym-
metrical (i.e., a function only
of 0 in the light of (1) UnsOld's
Theorem (Problem 5.1), (2) the
fact that only the s wave func-
tions are spherically symmetrical,
and (3) the fact that the elec-
tron repels its companions, thus
digging a hole in the cloud.
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Actinium Ac 89 227 Neodymium Nd 60 144.27

Aluminium Al 13 26.97 Neon Ne 10 20.183

Americium Am 95 (241) Neptunium Np 93 (237)

Antimony Sb 51 121.76 Nickel Ni 28 58.69

Argon A 18 39.944 Niobium Nb 41 92.91

Arsenic As 33 74.91 Nitrogen N 7 14.008

Astatine At 85 (210) Osmium Os 76 190.2

Barium Ba 56 137.36 Oxygen 0 8 16.0000

Beryllium Be 4 9.013 Pal ladi um Pd 46 106.7

Bismuth Bi 83 209.00 Phosphorus P 15 30.98

Boron B 5 10.82 Plathium Pt 78 195.23

Bromine Br 35 79.916 Plutonium Pu 94 (239)

Cadmium Cd 48 112.41 Polonium Po 84 210

Caesium Cs 55 132.91 Potassium K 19 39.096

Calcium Ca 20 40.08 Praseodymium Pr 59 140.92

Carbon C 6 12.010 Promethium Pm 61 (147)

Cerium Ce 58 140.13 Protactinium Pa 91 231

Chlorine CI 17 35.457 Radium Ra 88 226.05

Chromit:rn Cr 24 52.01 Radon Rn 86 222

Cobalt Co 27 58.94 Rhenium Re 75 186.31

Copper Cu 29 63.54 Rhodium Rh 45 102.91

Curium Cm 96 (242) Rubidium Rb 37 85.48

Dysprosium Dy 66 162.46 Ruthenium Ru 44 101.7

Erbium Er 68 167.2 Samarium Sm 62 150.43

Europium Eu 63 152.0 Scandium Sc 21 45.10

Fluorine F 9 19.00 Selenium Se 34 78.96

Francium Fr 87 (223) Si Ikon Si 14 28.06

Gadol inium Gd 64 156.9 Si Iver Ag 47 107.880

Gallium Ga 31 69.72 Sodium Na 11 22.997

Germanium Ge 32 72.60 Strontium Sr 38 87.63

Gold Au 79 197.2 Sulphur 5 16 32.066

Hafnium Hf 72 178.6 Tantalum Ta 73 180.88

He I ium He 2 4.003 Technetium Tc 43 (99)

Holmium Ho 67 164.94 Te 1 lerium Te 52 127.61

Hydrogen H 1 1.0080 Terbiu Tb 65 159.2

Indium In 49 114.76 Thal I ( T I 81 204.39

Iodine I 53 126.92 Thorium Th 90 232.12

Iridium Ir 77 193.1 Thu iium Tm 69 169.4

Iron Fe 26 55.85 Tin Sn 50 118.70

Krypton Kr 36 83.7 T Ranium Ti 22 47.90

Lanthanum La 57 138.92 Tungsten W 74 183.92

Lead Pb 82 207.21 Uranium U 92 238.07

Lithium Li 3 6.940 Vanadium V 23 50.95

Lutecium Lu 71 174.99 Xenon Xe 54 131 .3

Magnesium Mg 12 24.32 Ytterbium Yb 70 173.04

Manganese Mn 25 54.93 Yttrium Y 39 88.92

Mercury Hg 80 200.61 Zinc Zn 30 65.38

M o I y b d e n u m M o 42 95.95 Zirconium Zr 40 91 .22

Table 2.1 International Atomic Weights, 1949.

6 6
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MENDELEYEV'S PREDICTION FOR ES W1NKLEWS OBSERVATION ON GE
-.

Atomic weight about 72 Atomic weight 72.6

Can be obtained by reduction of Es02 Obtained by reduction of K2 GeF6
or K2EsF5 with Na with Na

Dark gray metal of high melting tem- Gray metal with melting point
perature, density about 5.5 958'C and density 5.36

On heating in air forms the oxideEs02 Reaction with oxygen forms Ge02
with high melting point and density with melting point 1100°C and
about 4.7 density 4.7

'Forms the sulfide Es52, insoluble in Ge52 is insoluble in water, soluble
water, soluble in ammonium sulfide
solution.

in , queous ammonium suifide.

Table 2.2 Properties of germanium.

Group 1 11 III IV V VI VII VIII

Va!ency +1 +2 +3
+4 (+5) (+6) (+7)

zero

Period

(1 H) 1 H 2 He

2 3 Li 4 Bt. 5 B 6 C 7 N 8 0 9 F 10 Ne

11 Na 12Mg 13 Al 14 Si 15 P 16 S 17 CI 18 A

4 19 K 20 Ca 31 Go 32 Ge 33 As 34 Se 35 Br 36 Ki

5 37 Rb 38 Sr 49 In 50 Sn 51 Eb 52 Te 53 1 54 Xe

55 Cs 56 Ba 81 T1 82 Pb 83 Bi 84 Po 85 At 86 Rn

Table 2.3 Periodic table omitting transi-

tion series.

When the elements are arranged in or-
der of increasing atomic number, the
repetition of properties in successions
of eight elements is made especially
conspicuous by omitting certain "trans-
ition" successions of elements. The
first period, '.'ontaining only two ele-
ments, is rudimentary: helium might be
regarded as a prototype of nonvalent
elements, and hydrogen of valent ele-
ments. Periods 2 and 3 require no in-
terruption by transition series, and
exhibit almost all the important fea-

tures repeated by the heavier elements.
Typically a period with an alkali
metal (strongly electropositive),
reaches a halogen (strongly electro-
negative), and ends with a chemically
inert rare gas. The elements in groups
I and II form strongly basic hydroxides,
those in groups V to VIII are neutral
or acidic, and many of those in groups
III and IV form "amphoteric" hydroxides
that can act either as bases toward the
later groups or as acids toward the
earlier.
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Group 1 11 III IV V VI VII VII

Period

4
29 Cu 30 Zn

21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni

5
47 Ag 48 Cd

39 y 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd

6
79 Au 80 Hg

57 La 72 Hf 73 Ta 74 W 75 Re 76 Os 77 Ir 78 Pt

Table 2.4 The principal transition series
of elements.

The principal transition sequences,
each of eight elements, interrupt peri-
ods 4, 5, and 6 of the periodic table
between groups II and III. All their
elements are metals, which are more or
less electropositive and henra form
compounds with the electronegative ele-
ments. Their group membership reflects
their principal valencies, but they are

often "ambivalent," exhibiting other
valencies. The sixth period is itself
interrupted between groups III and IV
by the sequence of fourteen "rare earth"
elements, sometimes called the "lan-
thanide" series. All the rare earths
show the principal valency 3, but some
can also show valency 2 or 4.

Group 1 11 III IV V VI Vil VIII

Valency +1 +2 +3
+4

4
(+5)
3

(+6)
2

(+7)
1 zero

Perio

1 (1 H) 1 H 2 He

2 3 Li 4 Be 5 B 6 C 7 N 8 0 9 F 10 Ne

3 11 Na 12 Mg 13 Al 14 Si 15 P 16 S 17 CI 18 A" 19 K
29 Cu

20 Ca
30 Zn

21 Sc
31 Ga

22 Ti
32 Ge

23 V
33 As

24 Cr
34 Se

25 Mn
35 Br

26 Fe 27 Co 28 Ni
36 Kr

37 Rb
47 Ag

38 Sr
48 Cd

39 Y
49 In

40 Zr
50 Sn

41 Nb
51 Sb

42 Mo
52 Te

43 Tc
53 I

44 Ru 45 Rh 46 Pd
54 Xe

6
55 Cs
79 Au

56 Ba
80 Hg

57 La
81 T1

72 Hf
82 Pb

73 Ta
83 Bi

74 W
84 Po

75 Re
85 At

76 Os 77 1r 78 Pt
86 Rn

Rare earths: 58 Ce, 59 Pr, 60 Nd, 61 Pm, 62 Sm, 63 Eu, 64 Gd, 65 Tb, 66 Dy,
67 Ho, 68 Er, 69 Tm, 70 Yb, 71 Lu.

Table 2.5 The periodic table to radon.

The full periodic table is here shown
as far as the rare gas radon. The rare
earth sequence of 14 elements, to be
inserted between atomic numbers 57
(lanthanum) and 72 (hafnium) are shown
below the table. The omitted seventh
period carries a few naturally occur-
ring elements such as radium, thorium,

and uranium, but all are radioactive,
having more or less unstable nuclei.
The elements beyond atomic number 92
(uranium) have been artifically pro-
duced only. Apparently the accumula-
tion of more than about two hundred
protons and neutrons in an atomic nue
cleus rapidly becomes unstable.


